纳米氧化锌对凋落物降解微生物群落结构和代谢功能的影响Impacts of Nano-scale ZnO on Microbial Community Composition and Degrading Activities Associated with Leaf Litter Decomposition
杜京京;崔明会;张玉燕;郭瑞林;高玉聪;胡丹;
摘要(Abstract):
随着纳米技术的迅速发展,纳米氧化锌广泛应用于抗菌涂料、电子装置、个人护理品等产品中,其生态毒理机制已成为生态学的研究热点。为了探究水生丝状真菌对纳米氧化锌的响应及适应机制,本文选用3种不同粒径的纳米氧化锌30 nm、90 nm和200 nm作为影响因子,通过室内模拟钻天杨Populus nigra L.凋落叶降解过程,研究纳米氧化锌的慢性暴露对水生丝状真菌生物量及代谢功能的影响效应,其中包括真菌的生孢率、群落多样性、脱氢酶活性、胞外降解酶活性、体系pH值、凋落叶降解速率以及碳氮含量,结果表明,粒径较小的纳米氧化锌(如30和90 nm)对水生丝状真菌活性及细菌代谢功能的抑制作用更强,且抑制作用达到显著水平所需的时间越短。46 d的慢性暴露显著影响了水生丝状真菌的生孢率与群落组成,其中Alatospora的生孢率与凋落叶降解速率呈显著负相关,表明该菌是纳米氧化锌的敏感菌,而Anguillospora和Flabellospora在纳米氧化锌的介入环境中产出较多的分生孢子,表明其为纳米氧化锌的耐受菌。另外,纳米氧化锌的长期暴露使水生丝状真菌对有机氮的降解功能具有促进作用,而对有机碳的代谢功能没有明显影响。总之,水生丝状真菌对纳米氧化锌的响应导致了凋落叶降解速率及碳氮分解效率在各处理间呈现显著差异。综上所述,本研究为纳米氧化锌对生态过程的毒理机制提供了必要的理论基础。
关键词(KeyWords): 纳米氧化锌;水生丝状真菌;凋落物降解;胞外酶活性
基金项目(Foundation): 国家青年科学基金项目(31500377)
作者(Author): 杜京京;崔明会;张玉燕;郭瑞林;高玉聪;胡丹;
Email:
DOI:
参考文献(References):
- [1]Farre M,Gajda-Schrantz K,Kantiani L,et al.Ecotoxicity and analysis of nanomaterials in the aquatic environment[J].Analytical and Bioanalytical Chemistry,2009,393(1):81-95
- [2]Notter D A,Mitrano D M,Nowack B.Are nanosized or dissolved metals more toxic in the environment?A metaanalysis[J].Environmental Toxicology and Chemistry,2014,33(12):2733-2739
- [3]Scown T M,Van A R,Tyler C R.Do engineered nanoparticles pose a significant threat to the aquatic environment?[J].Critical Reviews in Toxicology,2010,40(7):653-670
- [4]Colvin V L.The potential environmental impact of engineered nanomaterials[J].Nature Biotechnology,2003,21(10):1166-1170
- [5]Krauss G J,Sole M,Krauss G,et al.Fungi in freshwaters:Ecology,physiology and biochemical potential[J].FEMS Microbiology Reviews,2011,35(4):620-651
- [6]Gon9alves A L,Lírio A V,Gra9a M A S,et al.Fungal species diversity affects leaf decomposition after drought[J].International Review of Hydrobiology,2016,101(1-2):78-86
- [7]Pu G,Tong J,Su A,et al.Adaptation of microbial communities to multiple stressors associated with litter decomposition of Pterocarya stenoptera[J].Journal of Environmental Sciences,2014,26(5):1001-1013
- [8]Pu G,Du J,Ma X,et al.Contribution of ambient atmospheric exposure to Typha angustifolia litter decomposition in aquatic environment[J].Ecological Engineering,2014,67(6):144-149
- [9]Du J,Zhang Y,Liu L,et al.Can visible light impact litter decomposition under pollution of Zn O nanoparticles?[J].Chemosphere,2017,187:368-375
- [10]Gottschalk F,Sun T,Nowack B.Environmental concentrations of engineered nanomaterials:Review of modeling and analytical studies[J].Environmental Pollution,2013,181(6):287-300
- [11]Egon D,Johnson A C,Keller V D J,et al.Nano silver and nano zinc-oxide in surface waters—Exposure estimation for Europe at high spatial and temporal resolution[J].Environmental Pollution,2015,196:341-349
- [12]Xu Y,Wang C,Hou J,et al.Effects of Zn O nanoparticles and Zn2+on fluvial biofilms and the related toxicity mechanisms[J].Science of The Total Environment,2016,544:230-237
- [13]Xiao Y,Vijver M G,Chen G,et al.Toxicity and accumulation of Cu and Zn O nanoparticles in Daphnia magna[J].Environmental Science&Technology,2015,49(7):4657-4664
- [14]Ma H,Williams P L,Diamond S A.Ecotoxicity of manufactured Zn O nanoparticles—A review[J].Environmental Pollution,2013,172(1):76-85
- [15]Ferreira V,Raposeiro P M,Pereira A,et al.Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions[J].Freshwater Biology,2016,61:783-799
- [16]Boxall A,Tiede K,Chaudhry Q,et al.Current and Future Predicted Exposure to Engineered Nanoparticles[M].York,UK:Central Science Laboratory,2007
- [17]Gottschalk F,Sonderer T,Scholz R W,et al.Modeled environmental concentrations of engineered nanomaterials(Ti O2,Zn O,Ag,CNT,fullerenes)for different regions[J].Environmental Science&Technology,2009,43:9216-9222
- [18]Piccinno F,Gottschalk F,Seeger S,et al.Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J].Journal of Nanoparticle Research,2012,14:1-11
- [19]Pradhan A,Seena S,Pascoal C,et al.Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?[J].Microbial Ecology,2011,62:58-68
- [20]Batista D,Pascoal C,Cássio F.How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams?[J].Ecotoxicology and Environmental Safety,2017,140:148-155
- [21]Gra9a M A S,Barlocher F,Gessner M O.Methods to Study Litter Decomposition[M].Springer Netherlands,2005
- [22]Marvanova L P C,Cassio F.New and rare hyphomycetes from streams of northwest Portugal.Part I[J].Cryptogamie Mycologie,2003,24:339-358
- [23]Cochran V L,Elliott L F,Lewis C E.Soil microbial biomass and enzyme activity in subarctic agricultural and forest soils[J].Biology and Fertility of Soils,1989,7(4):283-288
- [24]Hoostal M J,Bidart-Bouzat M G,Bouzat J L.Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie[J].FEMS Microbiology Ecology,2008,65(1):156-168
- [25]The Allison Lab.Enzyme Assays for Fresh Litter and Soil Adapted from Bob Sinsabaugh Lab[R/OL].[2017-10-31].http://allison.bio.uci.edu/protocols
- [26]Olson J S.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44(2):322-331
- [27]Santo N,Fascio U,Torres F,et al.Toxic effects and ultrastructural damages to Daphnia magna of two differently sized Zn O nanoparticles:Does size matter?[J].Water Research,2014,53(8):339-350
- [28]Duarte S,Pascoal C,Alves A,et al.Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams[J].Freshwater Biology,2010,53:91-101
- [29]Pradhan A,Silva C O,Silva C,et al.Enzymatic biomarkers can portray nano Cu O-induced oxidative and neuronal stress in freshwater shredders[J].Aquatic Toxicology,2016,180:227-235
- [30]Adam N,Schmitt C,Bruyn L D,et al.Aquatic acute species sensitivity distributions of Zn O and Cu O nanoparticles[J].Science of the Total Environment,2015,526:233-242
- [31]Rashid M I,Shahzad T,Shahid M,et al.Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil[J].Journal of Hazardous Materials,2017,324(Pt B):298-305
- [32]Tripathy N,Hong T K,Ha K T,et al.Effect of Zn O nanoparticles aggregation on the toxicity in RAW 264.7murine macrophage[J].Journal of Hazardous Materials,2014,270(8):110-117
- [33]Sávoly Z,Buzanich G,Pepponi G,et al.The fate of nano-Zn O and its bulk counterpart in the body of microscopic nematodes:An X-ray spectrometric study[J].Microchemical Journal,2015,118:80-87
- [34]Wu B,Wang Y,Lee Y H,et al.Comparative eco-toxicities of nano-Zn O particles under aquatic and aerosol exposure modes[J].Environmental Science&Technology,2010,44(4):1484-1489
- [35]Li W M,Wang W X.Distinct biokinetic behavior of Zn O nanoparticles in Daphnia magna quantified by synthesizing 65Zn tracer[J].Water Research,2013,47(2):895-902
- [36]Bour A,Mouchet F,Cadarsi S,et al.Toxicity of Ce O2nanoparticles on a freshwater experimental trophic chain:A study in environmentally relevant conditions through the use of mesocosms[J].Nanotoxicology,2016,10(2):245-255
- [37]Bour A,Mouchet F,Cadarsi S,et al.Impact of Ce O2nanoparticles on the functions of freshwater ecosystems:A microcosm study[J].Environmental Science-Nano,2016,3:830-838
- [38]Pradhan A,Seena S,Schlosser D,et al.Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles[J].Environmental Toxicology and Chemistry,2015,34:923-930
- [39]Tlili A,Jabiol J,Behra R,et al.Chronic exposure effects of silver nanoparticles on stream microbial decomposer communities and ecosystem functions[J].Environmental Science&Technology,2017,51(4):2447-2455