纳米材料对环境抗生素抗性基因污染扩散影响的研究进展Influence of Nanomaterials on the Spread of Environmental Antibiotic Resistance Genes: A Review
韩雪;马晓琳;晁韶良;刘朝莹;
摘要(Abstract):
抗生素抗性基因(antibiotic resistance genes,ARGs)的环境扩散严重威胁了人类健康和生态安全。除抗生素滥用所产生的选择性压力以外,其他环境物质也能影响ARGs的传播。而纳米材料的广泛应用使其不可避免地在环境中扩散并进而影响ARGs的环境分布。因此,笔者综述了近年来纳米材料影响ARGs污染扩散的研究,并探讨了纳米材料对ARGs传播的影响机制,旨在深入理解ARGs的环境扩散行为,为ARGs环境控制及纳米材料非毒性环境效应的评估提供理论和技术支持。
关键词(KeyWords): 抗生素抗性基因;水平基因转移;活性氧;多重耐药
基金项目(Foundation): 江苏省基础研究计划项目(BK20160535);; 江苏省研究生科研创新计划项目(KYCX17_1796)
作者(Author): 韩雪;马晓琳;晁韶良;刘朝莹;
Email:
DOI:
参考文献(References):
- [1] Kumarasamy K K,Toleman M A,Walsh T R,et al. Emergence of a new antibiotic resistance mechanism in India,Pakistan,and the UK:A molecular,biological,and epidemiological study[J]. Lancet Infectious Diseases,2010,10(9):578-579
- [2] Tagliabue A,Rappuoli R. Changing priorities in vaccinology:Antibiotic resistance moving to the top[J]. Frontiers in Immunology,2018,9:1068
- [3] O’Neil J. Review on antimicrobial resistance. Antimicrobial resistance:Tackling a crisis for the health and wealth of nations. Creative Commons Attribution 4.0 International Public License 18.[R]. London:The Office of the United Kingdom Prime Minister,2014
- [4] Aminov R I,Mackie R I. Evolution and ecology of antibiotic resistance genes[J]. FEMS Microbiology Letters,2010,271(2):147-161
- [5] Tac?o M,Moura A,Correia A,et al. Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems[J]. Water Research,2014,48(3):100-107
- [6] Furuya E Y,Lowy F D. Antimicrobial-resistant bacteria in the community setting[J]. Nature Reviews Microbiology,2006,4(1):36-45
- [7] Rysz M,Alvarez P J. Amplification and attenuation of tetracycline resistance in soil bacteria:Aquifer column experiments[J]. Water Research,2004,38(17):3705-3712
- [8] Pruden A,Pei R,Storteboom H,et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science&Technology,2006,40(23):7445-7450
- [9] Hsu C,Hsu B,Ji W,et al. Antibiotic resistance pattern and gene expression of non-typhoid Salmonella in riversheds[J]. Environmental Science and Pollution Research International,2015,22(10):7843-7850
- [10] Bouki C,Venieri D,Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants:A review[J]. Ecotoxicology and Environmental Safety,2013,91(4):1-9
- [11] Knapp C W,Zhang W,Sturm B S M,et al. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions[J]. Environmental Pollution,2010,158(5):1506-1512
- [12] Guo X,Li J,Yang F,et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta,China[J]. Science of the Total Environment,2014,493:626-631
- [13]邹世春,朱春敬,贺竹梅,等.北江河水中抗生素抗性基因污染初步研究[J].生态毒理学报,2009,4(5):655-660Zou S C,Zhu C J,He Z M,et al. Preliminary studies on the pollution levels of antibiotic resistance genes in the water of Beijiang River,South China[J]. Asian Journal of Ecotoxicology,2009,4(5):655-660(in Chinese)
- [14] Paula P A,Ruben M F,Maria C P,et al. Antibiotic resistance in wastewater:Occurrence and fate of Enterobacteriaceae producers of class A and class Cβ-lactamases[J]. Environmental Letters,2015,50(1):26-39
- [15] Berglund B,Fick J,Lindgren P E. Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river[J]. Environmental Toxicology and Chemistry,2015,34(1):192-196
- [16] Marti E,Huerta B,Rodríguez-Mozaz S,et al. Characterization of ciprofloxacin-resistant isolates from a wastewater treatment plant and its receiving river[J]. Water Research,2014,61(18):67-76
- [17] Xu J,Xu Y,Wang H,et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere,2015,119:1379-1385
- [18] Huang H,Chen Y,Xiong Z,et al. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge:The role of p H in regulating tetracycline resistant bacteria and horizontal gene transfer[J]. Bioresource Technology,2016,218:1284-1289
- [19] Nagachinta S,Chen J. Transfer of class 1 integron-mediated antibiotic resistance genes from shiga toxin-producing Escherichia coli to a susceptible E. coli K-12 strain in storm water and bovine feces[J]. Applied and Environmental Microbiology,2008,74(16):5063-5067
- [20] Novotny C P,Lavin K. Some effects of temperature on the growth of F pili[J]. Journal of Bacteriology,1971,107(3):671-682
- [21] Kümmerer K. Resistance in the environment[J]. Journal of Antimicrobial Chemotherapy,2004,54(2):311-320
- [22] Jutkina J,Marathe N P,Flach C F,et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations[J]. Science of the Total Environment,2018,616(11-12):172-178
- [23] Ye Z,Gu A Z,Miao H,et al. Sub-inhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J].Environmental Science&Technology,2017,51(1):570-580
- [24] Lu J,Wang Y,Li J,et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera[J]. Environment International, 2018, 121:1217-1226
- [25] Chang P H,Juhrend B,Olson T M,et al. Degradation of extracellular antibiotic resistance genes with UV254treatment[J]. Environmental Science&Technology,2017,51(11):6185-6192
- [26] Wang Q,Mao D,Luo Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4[J]. Environmental Science&Technology,2015,49(14):8731-8740
- [27] Zhang Y,Gu A Z,Cen T,et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution,2018,237:74-82
- [28] Jiao Y N,Chen H,Gao R X,et al. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems[J]. Chemosphere,2017,184:53-61
- [29] Hussein A K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding[J]. Renewable&Sustainable Energy Reviews,2015,42:460-476
- [30] Thill A,Zeyons O,Spalla O,et al. Cytotoxicity of Ce O2nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism[J]. Environmental Science&Technology,2006,40(19):6151-6156
- [31] Fang J,Lyon D Y,Wiesner M R,et al. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior[J]. Environmental Science&Technology,2007,41(7):2636-2642
- [32] Barnes R J,Molina R,Xu J,et al. Comparison of Ti O2and Zn O nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of grampositive and gram-negative bacteria[J]. Journal of Nanoparticle Research,2013,15(2):1-11
- [33] Xiao X,Zhu W W,Liu Q Y,et al. Impairment of biofilm formation by Ti O2photocatalysis through quorum quenching[J]. Environmental Science&Technology,2016,50(21):11895-11902
- [34] Qiu Z,Yu Y,Chen Z,et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(13):4944-4949
- [35] Ding C,Pan J,Jin M,et al. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina[J]. Nanotoxicology,2016,10(8):1051-1060
- [36] Qiu Z,Shen Z,Qian D,et al. Effects of nano-TiO2on antibiotic resistance transfer mediated by RP4 plasmid[J]. Nanotoxicology,2015,9(7):895-904
- [37] Guo M T,Zhang G S. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance[J]. Chemosphere,2017,183:197-203
- [38] Wang X,Yang F,Zhao J,et al. Bacterial exposure to Zn O nanoparticles facilitates horizontal transfer of antibiotic resistance genes[J]. Nanoimpact,2018,10:61-67
- [39] Ren S,Boo C,Guo N,et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science&Technology,2018,52(15):8666-8673
- [40] Karaolia P,Michael-Kordatou I,Hapeshi E,et al. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based Ti O2composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B:Environmental,2018,224:810-824
- [41] Zou W,Li X,Lai Z,et al. Graphene oxide inhibits antibiotic uptake and antibiotic resistance gene propagation[J]. ACS Applied Materials&Interfaces,2016,8(48):33165-33174
- [42] Yu W,Zhan S,Shen Z,et al. Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet[J]. Chemical Engineering Journal,2017,313:836-846
- [43]陆贤,郭美婷,张伟贤.纳米零价铁对耐四环素菌耐药特性的影响[J].中国环境科学,2017,37(1):381-385Lu X,Guo M T,Zhang W X.Influence of nanoscale zerovalent iron(n ZVl)on resistance character of tetracyefine resistant bacteria[J]. China Environmental Science,2017,37(1):381-385(in Chinese)
- [44] Huang H N,Yang Y G,Yang S Y,et al. Cu O and Zn O nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion:Possible role of stimulated signal transduction[J]. Environmental Science:Nano,2018,DOI:10.1039/C8EN00370J
- [45] Roberta B,Roselyne F,Nicolas B,et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine Zn O nanoparticles colloidal medium[J]. Nano Letters,2006,6(4):866-870
- [46] Guo D,Zhu L,Huang Z,et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions[J]. Biomaterials,2013,34(32):7884-7894