水蚤分子生态毒理学研究进展Advances in Ecotoxicogenomics with Water Fleas
巩宁;孟紫强;邵魁双;孙野青;
摘要(Abstract):
水蚤是广泛分布于各类淡水水体中的浮游动物,在水生生态系统中具有重要地位,也是水生毒理学研究中常用的模式生物。近年来,分子毒理学的发展为水蚤生态毒理学研究提供了新的工具和研究思路。本文分别从基因组学、转录组学、蛋白质组学、代谢组学和表观遗传组学方面,综述了不同环境污染物(重金属、农药和杀菌剂等有机污染物、环境激素类化合物、纳米材料和藻毒素等)对水蚤的生态毒理学效应及分子机制,为通过水蚤生态毒理学研究进行环境污染生物标志物筛选及生态风险评估提供参考。
关键词(KeyWords): 水蚤;分子生态毒理学;生态毒理基因组学;生物标志物
基金项目(Foundation): 国家自然科学基金资助项目(41301560);; 国家重点研发计划资助项目“浒苔着生机理与防控技术(2016YFC1402104)”
作者(Author): 巩宁;孟紫强;邵魁双;孙野青;
Email:
DOI:
参考文献(References):
- [1] Kim H J, Koedrith P, Seo Y R. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate,Daphnia model organism[J]. International Journal of Molecular Sciences, 2015, 16(6):12261-12287
- [2] Organization for Economic Cooperation and Development(OECD). Guideline for Testing of Chemicals. Daphnia sp., Acute Immobilisation Test. OECD 202[R]. Paris:OECD, 2004
- [3] Organization for Economic Cooperation and Development(OECD). Guidelines for Testing of Chemicals. Daphnia magna Reproduction Test. OECD 211[R]. Paris:OECD,2012
- [4] Croce R, Cina F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations:Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J].Ecotoxicology and Environmental Safety, 2017, 144:79-87
- [5] Vukov O, Smith D S, Mc Geer J C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach[J]. Aquatic Toxicology, 2016, 170:142-151
- [6] Martins C, Jesus F T, Nogueira A J A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina:Introducing new data in an “old” issue[J]. Ecotoxicology, 2017, 26:1157-1169
- [7] Garcia-Reyero N, Poynton H C, Kennedy A J, et al. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents[J]. Environmental Science&Technology, 2009, 43:4188-4193
- [8] Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
- [9] Watanabe H, Kobayashi K, Kato Y, et al. Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics[J]. Cell Biology and Toxicology, 2008, 24:641-647
- [10]胡利腾,夏立萍,武敏敏,等.太平洋真宽水蚤(Eurytemora pacifica)Cu/ZnSOD基因克隆及在重金属胁迫下的表达分析[J].海洋与湖沼, 2018, 49(2):384-394Hu L T, Xia L P, Wu M M, et al. Cloning and expression analysis of Cu/Zn SOD gene of Eurytemora pacifica under metal stress[J]. Oceanologia Et Limnologia Sinica,2018, 49(2):384-394(in Chinese)
- [11] Roncalli V, Cieslak M C, Lenz P H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense[J]. Scientific Report, 2016, 6:25708-25720
- [12]韦晓慧.海洋酸化条件下铜、镉对日本虎斑猛水蚤(Tigriopus japonicus)发育、繁殖和超氧化物歧化酶活性的影响[D].青岛:中国海洋大学, 2013:1-3Wei X H. Effect of simulated ocean acidification condition and heavy metals of Cu and Cd on the development, reproduction and SOD activity of Tigriopus japonicus[D].Qingdao:Ocean University of China, 2013:1-3(in Chinese)
- [13] Santos E M, Paull G C, van Look K J, et al. Gonadal transcriptome responses and physiological consequences of exposure to estrogen in breeding zebrafish(Danio rerio)[J]. Aquatic Toxicology, 2007, 83:134-142
- [14] Ju Z L, Wells M C, Walter R B. DNA microarray technology in toxicogenomics of aquatic models:Methods and applications[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2007, 145:5-14
- [15] Costigan S L, Werner J, Ouellet J D, et al. Expression profiling and gene ontology analysis in fathead minnow(Pimephales promelas)liver following exposure to pulp and paper mill effluents[J]. Aquatic Toxicology, 2012,122-123:44-55
- [16] Poynton H C, Varshavsky J R, Chang B, et al. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity[J]. Environmental Science&Technology, 2007, 41:1044-1050
- [17] Poynton H C, Zuzow R, Loguinov A V, et al. Gene expression profiling in Daphnia magna, partⅡ:Validation of a copper specific gene expression signature with effluent from two copper mines in California[J]. Environmental Science&Technology, 2008, 42:6257-6263
- [18] Poynton H C, Lazorchak J M, Impellitteri C A, et al. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles[J]. Environmental Science&Technology, 2012, 46:6288-6296
- [19] Soetaert A, Moens L N, van der Ven K, et al. Molecular impact of propiconazole on Daphnia magna using a reproduction-related c DNA array[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2006, 142:66-76
- [20] Watanabe H, Tatarazako N, Oda S, et al. Analysis of expressed sequence tags of the water flea Daphnia magna[J]. Genome, 2005, 48:606-609
- [21] Heckmann L H, Connon R, Hutchinson T H, et al. Expression of target and reference genes in Daphnia magna exposed to ibuprofen[J]. BMC Genomics, 2006, 7:175
- [22] Olmstead A W, Le Blanc G A. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna[J]. The Journal of Experimental Zoology, 2002,293:736-739
- [23] Eads B D, Andrews J, Colbourne J K. Ecological genomics in Daphnia:Stress responses and environmental sex determination[J]. Heredity, 2008, 100(2):184-190
- [24] Jeong S W, Lee S M, Yum S S, et al. Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity[J]. Molecular&Cellular Toxicology, 2013, 9:149-158
- [25] Ansorge W J. Next-generation DNA sequencing techniques[J]. New Biotechnology, 2009, 25(4):195-203
- [26] Li Z, Li W, Zha J, et al. Transcriptome analysis reveals benzotriazole ultraviolet stabilizers regulate networks related to inflammation in juvenile zebrafish(Danio rerio)brain[J]. Environmental Toxicology, 2019, 34(2):112-122
- [27] Jackman K W, Veldhoen N, Miliano R C, et al. Transcriptomics investigation of thyroid hormone disruption in the olfactory system of the Rana[Lithobates] catesbeiana tadpole[J]. Aquatic Toxicology, 2018, 202:46-56
- [28] Yadetie F, Zhang X, Hanna E M, et al. RNA-Seq analysis of transcriptome responses in Atlantic cod(Gadus morhua)precision-cut liver slices exposed to benzo[a]pyrene and 17α-ethynylestradiol[J]. Aquatic Toxicology,2018, 201:174-186
- [29] Colli-Dula R C, Fang X, Moraga-Amador D, et al. Transcriptome analysis reveals novel insights into the response of low-dose benzo(a)pyrene exposure in male tilapia[J]. Aquatic Toxicology, 2018, 201:162-173
- [30] Beauvais-Flück R, Slaveykova V I, Cosio C. Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii[J]. Aquatic Toxicology, 2018,194:103-111
- [31] Orsini L, Gilbert D, Podicheti R, et al. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors[J]. Scientific Data, 2017, 31(4):170006
- [32] Russo C, Isidori M, Deaver J A, et al. Toxicogenomic responses of low level anticancer drug exposures in Daphnia magna[J]. Aquatic Toxicology, 2018, 203:45-50
- [33] Schwarzenberger A, Sadler T, Motameny S, et al. Deciphering the genetic basis of microcystin tolerance[J].BMC Genomics, 2014, 15:776-784
- [34] Le T H, Lim E S, Hong N H, et al. Proteomic analysis in Daphnia magna exposed to As(Ⅲ), As(Ⅴ)and Cd heavy metals and their binary mixtures for screening potential biomarkers[J]. Chemosphere, 2013, 93:2341-2348
- [35] Rainville L C, Carolan D, Varela A C, et al. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna[J]. Analyst, 2014, 7:1678-1686
- [36] Schwarzenberger A, Zitt A, Kroth P, et al. Gene expression and activity of digestive proteases in Daphnia:Effects of cyanobacterial protease inhibitors[J]. BMC Physiology, 2010, 10:6
- [37] Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
- [38] Taylor N S, Weber R J, White T A, et al. Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome[J]. Toxicology Sciences, 2010,118:307-317
- [39] Poynton H C, Taylor N S, Hicks J, et al. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium[J]. Environmental Science&Technology, 2011, 45:3710-3717
- [40] Nagato E G, D’ eon J C, Lankadurai B P, et al. H-1NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium[J]. Chemosphere, 2013, 93:331-337
- [41] Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):42
- [42] Vandegehuchte M B, Lemière F, Vanhaecke L, et al. Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation[J].Comparative Biochemistry Physiology Part C:Toxicology&Pharmacology, 2010, 151:278-285
- [43] Vandegehuchte M B, De Coninck D, Vandenbrouck T, et al. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna[J]. Environmental Pollution, 2010, 158(10):3323-3329
- [44] Vandegehuchte M B, Lemière F, Janssen C R. Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure[J]. Comparative Biochemistry and Physiology. Part C:Toxicology&Pharmacology,2009, 150(3):343-348