有机化学品不同温度下(过冷)液体蒸气压预测模型的建立与评价Development and Evaluation for a Predictive Model of( Subcooled) Vapor Pressure of Organic Chemicals at Different Temperatures
赵文星;李雪花;傅志强;陈景文;
摘要(Abstract):
(过冷)液体蒸气压(PL)是评价化学品在环境中分配、迁移和归趋行为的重要参数。PL具有较强的温度依附性。发展一种能够精确预测不同环境温度下化学品PL的方法,有助于填补化学品生态风险评估的大量数据缺失。本研究收集整理了661种有机化合物在不同温度下(200~830 K)共计10 478个log PL值。在此基础上,采用偏最小二乘(PLS)回归和支持向量机(SVM)方法,构建了PL的线性和非线性预测模型。结果表明:2种模型均具有良好的拟合度、稳健性及预测能力,SVM模型的预测性能略高于PLS模型(PLS:R2adj.tra=0.912,RMSEtra=0.477,Q2ext=0.910;SVM:R2adj.tra=0.997,RMSEtra=0.092,Q2ext=0.967)。机理分析表明,温度是影响PL的主要因素,温度越高,蒸气压越大;其次,X1sol也影响PL大小,X1sol用来描述分子间的色散作用,分子间色散力越小,蒸气压越大;此外,化合物的氢键个数、极性和分子构型等因素也影响PL大小。采用Wiliams plot方法表征了PLS模型应用域。所建立的模型可用来预测烷烃、烯烃、醇、酮、羧酸、苯、酚、联苯、卤代芳香烃、含N化合物及含S化合物在不同温度下的PL数据。
关键词(KeyWords): 有机化学品;(过冷)液体蒸气压(PL);温度依附性;偏最小二乘法(PLS);支持向量机(SVM)
基金项目(Foundation): 国家高技术研究发展计划(2012AA06A301);; 中央高校基本科研业务费专项(DUT14ZD213)
作者(Author): 赵文星;李雪花;傅志强;陈景文;
Email:
DOI:
参考文献(References):
- [1]Ruden C,Hansson S O.Registration,evaluation,and authorization of chemicals(REACH)is but the first stepHow far will it take us?Six further steps to improve the European Chemicals Legislation[J].Environmental Health Perspectives,2010,118(1):6-10
- [2]Enterprise&Industry Directorate General and Environment Directorate General,European Commission.REACH-registration,evaluation,authorisation and restriction of chemicals[OL].[2014-10-01].http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm
- [3]Dele Site A.The vapor pressure of environmentally significant organic chemicals:A review of methods and data atambient temperature[J].Journal of Physical and Chemical Reference Data,1997,26(1):157-193
- [4]Chen J W,Quan X,Yan Y,et al.Quantitative structureproperty relationships for vapor pressure of PCDD/Fs[J].Buletin of Environmental Contamination and Toxicology,2001,66(3):277-282
- [5]Xu H Y,Zou H W,Yu Q S,et al.QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers[J].Chemosphere,2007,66(10):1998-2010
- [6]Xu H Y,Zou J W,Hu G X,et al.QSPR/QSAR models for prediction of the physico-chemical properties and biological activity of polychlorinated diphenyl ethers(PCDEs)[J].Chemosphere,2010,80(6):665-670
- [7]Goudarzi N,Goodarzi M.Prediction of the vapor pressure of some halogenated methyl-phenyl ether(anisole)compounds using linear and nonlinear QSPR methods[J].Molecular Physics,2009,107(15):1615-1620
- [8]Gajewicz A,Haranczyk M,Puzyn T.Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic polutants with QSPR:How different are chlorinated and brominated congeners[J].Atmospheric Environment,2010,44(11):1428-1436
- [9]Katritzky A R,Slavov S H,Dobchev D A,et al.Rapid QSPR model development technique for prediction of vapor pressure of organic compounds[J].Computers&Chemical Engineering,2007,31(9):1123-1130
- [10]Katritzky A R,Wang Y L,Sild S,et al.QSPR studies on vapor pressure,aqueous solubility,and the prediction of waterair partition coefficients[J].Journal of Chemical Information and Computer Sciences,1998,38(4):720-725
- [11]Staikova M,Wania F,Donaldson D J.Molecular polarizability as a single-parameter predictor of vapour pressures and octanol-air partitioning coefficients of non-polar compounds:A priority approach and results[J].Atmospheric Environment,2004,38(2):213-225
- [12]Liang C K,Galagher D A.QSPR prediction of vapor pressure from solely theoretically-derived descriptors[J].Journal of Chemical Information and Computer Sciences,1998,38(2):321-324
- [13]Basak S C,Mils D.Quantitative structure-property relationships(QSPRs)for the estimation of vapor pressure:A hierarchical approach using mathematical structural descriptors[J].Journal of Chemical Information and Computer Sciences,2001,41(3):692-701
- [14]Yaffe D,Cohen Y.Neural network based temperature-dependent quantitative structure property relations(QSPRs)for predicting vapor pressure of hydrocarbons[J].Journal of Chemical Information and Computer Sciences,2001,41(2):463-477
- [15]Gharagheizi F,Eslamimanesh A,Ilani-Kashkouli P,et al.Determination of vapor pressure of chemical compounds:A group contribution model for an extremely large database[J].Industrial&Engineering Chemistry Research,2012,51(20):7119-7125
- [16]OECD.Guidance document on the validation of(Quantitative)Structure-Activity Relationships[(Q)SARs]models.(2007-03-30).[2014-10-01].http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2
- [17]Norusis M J.SPSS 7.5 Guide to Data Analysis[M].New Jersey,Prentice Hal,Pap/Dsk,1997:458
- [18]Wang Y N,Chen J W,Li X H,et al.Predicting rate constants of hydroxyl radical reactions with organic polutants:Algorithm,validation,applicability domain,and mechanistic interpretation[J].Atmospheric Environment,2009,43(5):1131-1135
- [19]Ding G H,Chen J W,Qiao X L,et al.Quantitative relationships between molecular structures,environmental temperatures and solid vapor pressures of PCDD/Fs[J].Chemosphere,2006,62(7):1057-1063
- [20]Eriksson L,Jaworska J,Worth A P,et al.Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs[J].Environmental Health Perspectives,2003,111(10):1361-1375
- [21]Cortes C,Vapnik V.Support-Vector Networks[J].Machine Learning,1995,20(3):273-297
- [22]Schuurmann G,Ebert R U,Chen J W,et al.External validation and prediction employing the predictive squared correlation coefficient-test set activity mean vs training set activity mean[J].Journal of Chemical Information and Modeling,2008,48(11):2140-2145
- [23]Gramatica P.Principles of QSAR models validation:Internal and external[J].QSAR&Combinatorial Science,2007,26(5):694-701
- [24]Zefirov N S,Palyulin V A.QSAR for boiling points of"small"sulfides.Are the"high-quality structure-propertyactivity regressions"the real high quality QSAR models[J].Journal of Chemical Information and Computer Sciences,2001,41(4):1022-1027