冷冻胁迫对芦荟叶肉细胞原生质体中Ca~(2+)、Na~+分布的影响Effects of Freezing Stress on the Distribution of Ca~(2+) and Na~+ Ions in the Protoplast of Aloe vera Mesophyll Cells
张海娇;徐长山;邵海玲;乔金;何惠敏;郑博文;
摘要(Abstract):
低温和冻害是造成巨大农业损失和植物死亡的主要逆境因子。为揭示冷冻胁迫对植物细胞中离子分布的影响,选择芦荟细胞原生质体为受试材料,使用离子选择性微电极检测了经冷冻处理后的芦荟原生质体在低渗液中破裂时产生的Ca~(2+)浓度脉冲信号,并同时检测Na~+浓度脉冲信号作为对比。研究了冷冻温度、解冻时间和ZnO NPs处理等因素对冷冻胁迫下芦荟原生质体中Ca~(2+)分布的影响。结果表明,与未经冷冻处理的原生质体相对比,经过冷冻处理的原生质体破裂后,其Ca~(2+)脉冲信号前沿处发生明显的"凹陷",这说明,原生质体中Ca~(2+)分布出现分层现象,靠近细胞中心浓度较高而细胞膜附近浓度较低。这一分层现象在温度为-7℃时开始出现,原生质体解冻5 h后仍未消失。经过ZnO NPs预处理后再进行冷冻的原生质体,其Ca~(2+)脉冲凹陷深度明显减小。而当用ZnO NPs处理解冻后的原生质体时,其Ca~(2+)分层现象消失。冷冻胁迫下芦荟原生质体内Ca~(2+)分布发生显著变化,表明原生质体内Ca~(2+)分布变化与其抗寒反应存在一定关系。与Ca~(2+)相反,Na~+的分布几乎不受冷冻因素的影响。ZnO NPs处理对冷冻芦荟原生质体中Ca~(2+)浓度分布分层有明显的缓解作用,表明一定浓度范围的ZnO NPs在缓解冷冻造成的Ca~(2+)流动性下降,维持细胞Ca~(2+)分布的调控能力方面,具有一定的积极影响。
关键词(KeyWords): 冷冻胁迫;芦荟;Ca2+分布;离子选择性微电极;离子浓度脉冲;ZnO NPs
基金项目(Foundation): 国家自然科学基金项目(No.11374046,No.11074030)
作者(Author): 张海娇;徐长山;邵海玲;乔金;何惠敏;郑博文;
Email:
DOI:
参考文献(References):
- [1]Xu S C, Li Y P, Hu J, et al. Responses of antioxidant enzymes to chilling stress in tobacco seedlings[J]. Journal of Integrative Agriculture, 2010, 9(11):1594-1601
- [2]赵黎明,李明,郑殿峰,等.冷害后植物生理变化及外源物质调控研究进展[J].中国农学通报, 2015, 31(12):217-223Zhao L M, Li M, Zheng D F, et al. Research progress of physiological changes and regulation of exogenous substance of chilling injury on plant[J]. Chinese Agricultural Science Bulletin, 2015, 31(12):217-223(in Chinese)
- [3]王士强,赵海红,赵黎明,等.水稻冷害生理功能变化与调控研究进展[J].中国农学通报, 2017, 33(36):1-6Wang S Q, Zhao H H, Zhao L M, et al. Research progress of physiological function changes and regulations in rice under chilling damage[J]. Chinese Agricultural Science Bulletin, 2017, 33(36):1-6(in Chinese)
- [4]Zhu G W, Zhou T, Yao S. Effects of chitosan and salicylic acid on cold resistance of litchi under low temperature[J].Agricultural Science&Technology, 2011(1):26-29, 32
- [5]Kazemishahandashti S S, Maaliamiri R, Zeinali H, et al.Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings[J]. Journal of Plant Physiology, 2014, 171(13):1106-1116
- [6]Ma Y, Dai X, Xu Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221
- [7]Zhu X, Taylor A, Zhang S, et al. Measuring spatial and temporal Ca2+signals in Arabidopsis plants[J]. Journal of Visualized Experiments, 2014(91):e51945
- [8]Pandey S, Tiwari S B, Upadhyaya K C, et al. Calcium signaling:Linking environmental signals to cellular functions[J]. Critical Reviews in Plant Sciences, 2000, 19(4):291-318
- [9]Chen L, Liu X. Relationship between Ca2+and stress-resistance of fruit trees[J]. Subtropical Plant Science, 2001,30(4):61-67
- [10]Min C K, Chung W S, Yun D J, et al. Calcium and calmodulin-mediated regulation of gene expression in plants[J]. Molecular Plant, 2009, 2(1):13-21
- [11]简令成,王红. Ca2+在植物细胞对逆境反应和适应中的调节作用[J].植物学报, 2008, 25(3):255-267Jian L C, Wang H. Ca2+signaling in plant cell response and adaptation to low temperature, drought and salt stresses[J]. Chinese Bulletin of Botany, 2008, 25(3):255-267(in Chinese)
- [12]Knight H. Calcium signaling during abiotic stress in plants[J]. International Review of Cytology, 1999, 195:269-324
- [13]Zheng G H, Pan D M, Niu X Q, et al. Changes in cell Ca2+distribution in loquat leaves and its effects on cold tolerance[J]. Korean Journal of Horticultural Science&Technology, 2014, 32(5):607-613
- [14]van der Luit A H, Olivari C, Haley A, et al. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco[J]. Plant Physiology, 1999, 121(3):705-714
- [15]Mori K, Na R, Naito M, et al. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+increase and cold tolerance in Arabidopsis[J]. Scientific Reports, 2018, 8(1):550
- [16]李三相,周向睿,王锁民. Na+在植物中的有益作用[J].中国沙漠, 2008, 28(3):485-490Li S X, Zhou X R, Wang S M. Positive functions of sodium in plants[J]. Journal of Desert Research, 2008, 28(3):485-490(in Chinese)
- [17]Kronzucker H J, Coskun D, Schulze L M, et al. Sodium as nutrient and toxicant[J]. Plant&Soil, 2013, 369(1-2):1-23
- [18]Brownell P F, Crossland C J. The requirement for sodium as a micronutrient by species having the c(4)dicarboxylic photosynthetic pathway[J]. Plant Physiology, 1972, 49(5):794-797
- [19]陈鹏程,陈析丰,马伯军,等.植物耐盐性与钠离子动态平衡研究进展[J].浙江师范大学学报:自然科学版,2016, 39(2):207-214Chen P C, Chen X F, Ma B J, et al. Na+homeostasis and salt tolerance of plants[J]. Journal of Zhejiang Normal University:Natural Sciences, 2016, 39(2):207-214(in Chinese)
- [20]刘瑞娟,蔡振媛,车国冬.测定植物胞内游离钠离子的研究进展[J].广西植物, 2015(3):442-446Liu R J, Cai Z Y, Che G D. Progress of the study on determination of free sodium in plant cells[J]. Guihaia,2015(3):442-446(in Chinese)
- [21]Keisham M, Mukherjee S, Bhatla S C. Mechanisms of sodium transport in plants-progresses and challenges[J]. International Journal of Molecular Sciences, 2018, 19(3):647
- [22]Moezzi A, Mcdonagh A M, Cortie M B. Zinc oxide particles:Synthesis, properties and applications[J]. Chemical Engineering Journal, 2012, 185-186:1-22
- [23]Shrestha B, Acosta-Martinez V, Cox S B, et al. An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning[J].Journal of Hazardous Materials, 2013, 261:188-197
- [24]陈泽林,徐长山,张兰兰,等. Zn O NPs对水培小麦(Triticum aestivum L.)种子不同发育阶段的影响[J].生态毒理学报, 2017(6):156-163Chen Z L, Xu C S, Zhang L L, et al. Effects of Zn O NPs on water-cultured wheat(Triticum aestivum L.)seeds at different germination phases[J]. Asian Jounrnal of Ecotoxicology, 2017(6):156-163(in Chinese)
- [25]Boonyanitipong P, Kositsup B, Kumar P, et al. Toxicity of Zn O and Ti O2nanoparticles on germinating rice seed L[J]. International Journal of Bioscience, Biochemistry and Bioinformatics, 2011, 1(4). DOI:10.7763/IJBBB.2011.V1.53
- [26]Prasad T N V K V, Sudhakar P, Sreenivasulu Y, et al.Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut[J]. Journal of Plant Nutrition, 2012, 35(6):905-927
- [27]Pavani K V, Divya V, Veena I, et al. Influence of bioengineered zinc nanoparticles and zinc metal on Cicer arietinum seedlings growth[J]. Asian Journal of Agriculture and Biology, 2014, 2(4):216-223
- [28]Abdel Latef A A H, Abu Alhmad M F, Abdelfattah K E.The possible roles of priming with Zn O nanoparticles in mitigation of salinity stress in lupine(Lupinus termis)plants[J]. Journal of Plant Growth Regulation, 2017, 36(1):60-70
- [29]薛琳,赵东杰,侯佩臣,等.自参考离子选择性电极技术应用中的微电极制备及测试[J].农业工程学报,2013, 29(16):182-189Xue L, Zhao D J, Hou P C, et al. Test and preparation of microelectrode in applications of self-referencing ion electrode technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(16):182-189(in Chinese)
- [30]Thomas R C, Bers D M. How to make calcium-sensitive microelectrodes[R]. Long Island:Cold Spring Harbor Laboratory Press, 2013
- [31]徐华东,王玉婷,王立海,等.低温环境下木材细胞中冰晶的形成和传播研究综述[J].南京林业大学学报:自然科学版, 2017, 41(2):169-174Xu H D, Wang Y T, Wang L H, et al. A review on ice formation and propagation in wood cells at subzero temperatures[J]. Journal of Nanjing Forestry University:Natural Science Edition, 2017, 41(2):169-174(in Chinese)
- [32]Oberd?rster G, Elder A, Rinderknecht A. Nanoparticles and the brain:Cause for concern?[J]. Journal of Nanoscience&Nanotechnology, 2009, 9(8):4996-5007
- [33]赵明明,周余华,彭方仁,等.低温胁迫下冬青叶片细胞内Ca2+水平及可溶性糖含量的变化[J].南京林业大学学报:自然科学版, 2013, 37(5):1-5Zhao M M, Zhou Y H, Peng F R, et al. Changes of Ca2+level and soluble sugar content in cells of Ilex L. leaflets under low temperature stress[J]. Journal of Nanjing Forestry University:Natural Science Edition, 2013, 37(5):1-5(in Chinese)
- [34]杨蕊,关雪莲,张睿鹂,等.低温胁迫下北海道黄杨叶肉细胞Ca2+和Ca2+-ATPase的变化[J].园艺学报, 2013,40(6):1139-1152Yang R, Guan X L, Zhang R L, et al. Changes of Ca2+and Ca2+-ATPase in the mesophyll cells of Euonymus japonicus ‘Cuzhi’under cold stress[J]. Acta Horticulturae Sinica, 2013, 40(6):1139-1152(in Chinese)
- [35]王红,简令成,张举仁.低温胁迫下水稻幼叶细胞内Ca2+水平的变化[J].植物学报, 1994(8):587-591Wang H, Jian L C, Zhang J R. Changes of the level of Ca2+in cells of rice seedlings under low temperature stress[J]. Acta Botanica Sinica, 1994(8):587-591(in Chinese)
- [36]谢潮添,杨盛昌,廖启炓,等.低温胁迫下董棕(Garyota urens L.)幼苗叶肉细胞内Ca2+水平及细胞超微结构的变化[J].植物学报, 2003, 20(2):212-217Xie C T, Yang S C, Liao Q L, et al. The changes in Ca2+level and ultrastructure in the leaf cells of Garyota urens L. under low temperature stress[J]. Chinese Bulletin of Botany, 2003, 20(2):212-217(in Chinese)
- [37]Knight H, Knight M R. Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis[J]. Journal of Experimental Botany, 2000, 51(351):1679-1686
- [38]Dimkpa C O, Latta D E, Mclean J E, et al. Fate of Cu O and Zn O nano-and microparticles in the plant environment[J]. Environmental Science&Technology, 2013, 47(9):4734-4742
- [39]Lee S, Chung H, Kim S, et al. The genotoxic effect of Zn O and Cu O nanoparticles on early growth of buckwheat,Fagopyrum esculentum[J]. Water Air&Soil Pollution, 2013, 224(9):1668
- [40]Ghosh M, Jana A, Sinha S, et al. Effects of Zn O nanoparticles in plants:Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest[J]. Mutation Research/Genetic Toxicology&Environmental Mutagenesis, 2016, 807:25-32
- [41]Pokhrel L R, Dubey B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles[J]. Science of the Total Environment,2013, 452-453(3):321-332