玉米秸秆生物炭对沉积物中BDE-47生态毒性的影响Impacts of Biochar Derived from Corn Straw on the Ecotoxicity of BDE-47 in the Sediments
向静;米盈;田斌;龚双姣;马陶武;
摘要(Abstract):
生物炭对于污染沉积物的原位修复具有很大的潜力,但关于生物炭对沉积物中有机污染物生态毒性影响的研究则较少报道。为评价生物炭对沉积物中BDE-47生态毒性的影响,以底栖动物铜锈环棱螺为测试生物,采用28 d慢性沉积物生物测试研究了不同添加比例的玉米秸秆生物炭(CSB)与BDE-47联合作用对BDE-47生物积累、肝胰脏细胞DNA损伤以及氧化胁迫生物标志物的影响。结果表明,在慢性暴露情况下,CSB对铜锈环棱螺不具有毒性;CSB通过显著降低沉积物间隙水中BDE-47的浓度而降低其在铜锈环棱螺体内的生物积累。在实验浓度范围内(1%~7%),CSB添加比例越高,降低BDE-47生物积累的效果越显著。不同添加比例的CSB均可以显著降低BDE-47对铜锈环棱螺DNA损伤的毒性,较高比例(4%和7%)CSB的效果更为显著,但BDE-47的氧化胁迫毒性不随CSB添加比例的升高而下降。因此,从降低BDE-47生态毒性的角度考虑,沉积物中CSB的合适添加比例为4%左右。
关键词(KeyWords): BDE-47;铜锈环棱螺;生态毒性;玉米秸秆;生物炭;沉积物
基金项目(Foundation): 国家自然科学基金资助项目(41661096);; 湖南省研究生科研创新项目(CX20190864)
作者(Author): 向静;米盈;田斌;龚双姣;马陶武;
Email:
DOI:
参考文献(References):
- [1] Larsson P. Contaminated sediments of lakes and oceans act as sources of chlorinated hydrocarbons for release to water and atmosphere[J]. Nature, 1985, 317:347-349
- [2] Jonker M T O, Hoenderboom A M, Koelmans A A.Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls[J]. Environmental Toxicology and Chemistry, 2004, 23(11):2563-2570
- [3] Sun X L, Ghosh U. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments[J]. Environmental Toxicology and Chemistry, 2008, 27(11):2287-2295
- [4] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33
- [5] Shen M, Xia X, Wang F, et al. Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment[J]. Environmental Toxicology and Chemistry, 2012, 31(1):202-209
- [6] Xia X, Chen X, Zhao X, et al. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment[J]. Environmental Science&Technology, 2012, 46(22):12467-12475
- [7] Rakowska M I, Kupryianchyk D, Harmsen J, et al. In situ remediation of contaminated sediments using carbonaceous materials[J]. Environmental Toxicology and Chemistry, 2012, 31(4):693-704
- [8] Sun K, Gao B, Ro K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163:167-173
- [9] Jia F, Gan J. Comparing black carbon types in sequestering polybrominated diphenyl ethers(PBDEs)in sediments[J]. Environmental Pollution, 2014, 184:131-137
- [10] Cao X, Ma L, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science&Technology, 2009, 43(9):3285-3291
- [11] Wang Y, Wang L, Fang G, et al. Enhanced PCBs sorption on biochars as affected by environmental factors:Humic acid and metal cations[J]. Environmental Pollution, 2013,172:86-93
- [12] BielskáL,?kulcováL, NeuwirthováN, et al. Sorption,bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils[J]. Science of The Total Environment, 2018, 624:78-86
- [13]田斌,王萌,陈环宇,等.活性污泥生物炭对沉积物中镉生态毒性的影响[J].生态与农村环境学报, 2018, 34(2):161-168Tian B, Wang M, Chen H Y, et al. Impacts of biochar derived from activated sludge on ecotoxicity of Cd in the sediment[J]. Journal of Ecology and Rural Environment,2018, 34(2):161-168(in Chinese)
- [14] Ma T W, Gong S J, Zhou K, et al. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa(Reeve)and its utility as a test species for sediment toxicity[J]. Journal of Environmental Sciences, 2010, 22(2):304-313
- [15]周科,马陶武,朱程,等. 2,2’,4,4’-四溴联苯醚(BDE-47)污染沉积物对铜锈环棱螺肝胰脏的SOD、CAT和EROD活性的影响[J].环境科学学报, 2010, 30(8):1666-1673Zhou K, Ma T W, Zhu C, et al. Effects of 2,2’,4,4’-tetrabromodiphenylether(BDE-7)-contaminated sediments on SOD, CAT, and EROD activities in the hepatopancreas of Bellamya aeruginosa[J]. Acta Scientiae Circumstantiae,2010, 30(8):1666-1673(in Chinese)
- [16]龚双姣,王萌,龙奕,等.沉积物中人工纳米颗粒对BDE-47生态毒性的影响[J].农业环境科学学报, 2015,34(11):2089-2096Gong S J, Wang M, Long Y, et al. Impact of engineered nanoparticles on ecotoxicity of BDE-47 in sediments[J].Journal of Agro-Environment Science, 2015, 34(11):2089-2096(in Chinese)
- [17]陈社军,麦碧娴,曾永平,等.珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征[J].环境科学学报, 2005, 25(9):1265-1271Chen S J, Mai B X, Zeng S P, et al. Polybrominated diphenyl ethers(PBDEs)in surficial sediments of the Pearl River Delta and adjacent South China Sea[J]. Acta Scientiae Circumstantiae, 2005, 25(9):1265-1271(in Chinese)
- [18]王萌,刘珊珊,龙奕,等.沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响[J].环境科学学报, 2015, 35(12):4150-4158Wang M, Liu S S, Long Y, et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4150-4158(in Chinese)
- [19] Simpson S L, Angel B M, Jolley D F. Metal equilibration in laboratory-contaminated(spiked)sediments used for the development of whole-sediment toxicity tests[J].Chemosphere, 2004, 54(5):597-609
- [20] Tice R R, Agurell E, Anderson D. Single cell gel/comet assay:Guidelines for in vitro and in vivo genetic toxicology testing[J]. Environmental and Molecular Mutagenesis, 2000, 35(3):206-221
- [21] Ma T W, Wang M, Gong S J, et al. Impacts of sediment organic matter content and p H on ecotoxicity of coexposure of Ti O2nanoparticles and cadmium to freshwater snails Bellamya aeruginosa[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):153-165
- [22]龙奕,刘珊珊,王萌,等.纳米Al2O3和Cd联合暴露对铜锈环棱螺体内Cd的生物积累和抗氧化酶活性的影响[J].生态毒理学报, 2015, 10(2):216-223Long Y, Liu S S, Wang M, et al. Effects of Cd and Al2O3-NPs co-exposure on bioaccumulation of Cd and antioxidase enzyme activities in Bellamya aeroginosa[J].Asian Journal of Ecotoxicology, 2015, 10(2):216-223(in Chinese)
- [23]刘佳,彭巾英,马陶武,等.沉积物中2,2’,4,4’-四溴联苯醚(BDE-47)在铜锈环棱螺体内的毒代动力学及其繁殖毒性[J].生态毒理学报, 2012, 7(3):259-267Liu J, Peng J Y, Ma T W, et al. Toxicokinetics and reproductive effects of sediment-associated 2,2’,4,4’-tetrabromodiphenyl ether(BDE-47)in Bellamya aeruginosa[J].Asian Journal of Ecotoxicology, 2012, 7(3):259-267(in Chinese)
- [24] Freddo A, Cai C, Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution, 2012,171:18-24
- [25] Campisi T, SamorìC, Torri C, et al. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses[J]. Ecotoxicology and Environmental Safety,2016, 132:87-93
- [26] Busch D, Kammann C, Grunhage L, et al. Simple biotoxicity tests for evaluation of carbonaceous soil additives:Establishment and reproducibility of four test procedures[J]. Journal of Environmental Quality, 2012, 41(4):1023-1032
- [27] Busch D, Stark A, Kammann C I, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis[J]. Ecotoxicology and Environmental Safety, 2013, 97:59-66
- [28]韩杰,孟军,杜宛璘,等.生物炭对小鼠的毒性作用研究[J].沈阳农业大学学报, 2017(4):451-455Han J, Meng J, Du W L, et al. Study on sub-acute toxicity test in mice of rice straw biochar[J]. Journal of Shenyang Agricultural University, 2017(4):451-455(in Chinese)
- [29] Devi P, Saroha A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J].Bioresource Technology, 2014, 162:308-315
- [30] Domene X, Enders A, Hanley K, et al. Ecotoxicological characterization of biochars:Role of feedstock and pyrolysis temperature[J]. Science of the Total Environment,2015, 512-513:552-561
- [31] Lyu H, He Y, Tang J, et al. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment[J]. Environmental Pollution, 2016, 218:1-7
- [32] Huang H, Yao W, Li R, et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue[J]. Bioresource Technology, 2018, 249(Supplement C):487-493
- [33] Fornes F, Belda R M. Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars[J]. Journal of Environmental Management, 2017, 191:237-243
- [34] Oleszczuk P, Jos'ko I, Kus'mierz M. Biochar properties regarding to contaminants content and ecotoxicological assessment[J]. Journal of Hazardous Materials, 2013, 260:375-382
- [35] Wang F, Ji R, Jiang Z, et al. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms[J]. Environmental Pollution, 2014, 186:241-247
- [36] BielskáL, Kah M, Sigmund G, et al. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition[J]. Science of the Total Environment, 2017, 595:132-140