土壤中铜和镍的不同毒性阈值间量化关系The Quantative Relationship of Different Ecotoxicity Thresholds for Copper and Nickel in Soils
王小庆;李菊梅;韦东普;黄占斌;马义兵;
摘要(Abstract):
污染物的剂量-效应关系是生态毒理学的重要基础。在剂量-效应关系中,EC10(10%有效抑制浓度)是建立基于风险的环境质量基准值的基础,但有关污染物生态效应的研究报导中多数采用毒性阈值EC50(半数抑制浓度),如何将EC50转化为EC10是建立污染物环境质量基准急需解决的问题。利用log-logistic拟合了中国17种代表性土壤中大麦、西红柿、小白菜3种植物的铜和镍剂量—效应曲线,获得了不同土壤中铜、镍剂量—效应曲线中段的斜率(b值),并依据计量—效应曲线获得3种植物在不同土壤中的铜、镍EC10和EC50值。结果表明:铜和镍的剂量—效应曲线b值受土壤性质显著影响,但不同物种间的变化较小,大麦、西红柿及小白菜的铜、镍剂量—效应曲线b值绝对值的平均值分别接近于6.0和7.0。利用来自中国土壤的毒理学数据建立的铜和镍EC50和EC10单因子量化模型能较为准确地通过铜和镍EC50值预测其EC10值,其量化模型的决定系数分别为0.704和0.799,当分别考虑土壤pH和有机碳(OC)的影响时,铜和镍的EC10量化模型的决定系数分别提高至0.730和0.885。土壤中铜、镍EC10与EC50量化关系的建立可为中国土壤中铜、镍的风险评价及相关标准的制定提供更多的数据基础。
关键词(KeyWords): 土壤;剂量—效应曲线;铜;镍;毒性阈值
基金项目(Foundation): 国家自然科学基金(40971262);; 公益性行业(农业)科研专项(200903015)
作者(Author): 王小庆;李菊梅;韦东普;黄占斌;马义兵;
Email:
DOI:
参考文献(References):
- [1]Suter G W,Cormier S M.What is meant by risk-based environmental quality criteria?[J].Integrated Environmental Assessment and Management,2008,4(4):486-489
- [2]Posthuma L,Traas T P,Suter G W.General introduction to species sensitivity distributions[M]//Posthuma L,Traas T P,Suter G W.Species Sensitivity Distributions in Ecotoxicology.Boca Raton FL,USA:Lewis,2002:3-9
- [3]Van Straalen N M.Theory of ecological risk assessment based on species sensitivity distributions[M]//Posthuma L,Traas T P,Suter G W.Species Sensitivity Distributions in Ecotoxicology.Boca Raton,FL,USA:Lewis,2002:371-487
- [4]Shao Q.Estimation for hazardous concentrations based on NOEC toxicity data:An alternative approach[J].Environmetrics,2000,11(5):583-595
- [5]Fox D R.NECS,NOECS and the EC X[J].Australasian Journal of Ecotoxicology,2008,14:7-9
- [6]USEPA(United States Environmental Protection Agency).Technical Support Document for Water Quality-Based Toxics Control.[R].No.EPA 505/2-90-001 Washington,D C,1991,USA
- [7]Hoekstra J A,Van Ewijk P H.Alternatives for the no-observed effect level[J].Environmental Toxicology and Chemistry,1993,12:187-194
- [8]Moore D R J,Caux P Y.Estimating low toxic effects[J].Environmental Toxicology and Chemistry,1997,16:794-801
- [9]Radix P,Leonard M,Papantoniou C,et al.Comparison of four chronic toxicity tests using algae,bacteria,and invertebrates assessed with sixteen chemicals[J].Ecotoxicology and Environmental Safety,2000,47(2):186-194
- [10]Newman M C."What exactly are you inferring?"A closer look at hypothesis testing[J].Environmental Toxicology and Chemistry,2008,27(5):1013-1019
- [11]Halleux I,Bornatowicz N,Grillitsch B,et al.Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data[R].ENV/MC/CHEM(98)18,Paris:Organisation for Economic Cooperation and Development,1998:125-129
- [12]EU(European Union).Draft Risk Assessment Report for Nickel and Nickel Compounds.Section 3.1:Terrestrial Effects Assessment[R].EU,Brussels:Draft of May 11,2006:487-512
- [13]Bos R,Huijbregts M,Peijnenburg W.Soil type-specific environmental quality standards for zinc in Dutch soil[J].Integrated Environmental Assessment and Management,2005,1(3):252-258
- [14]Warne M S J,van Dam R.NOEC and LOEC DATA should no longer be generated or used[J].Australasian Journal of Ecotoxicology,2008,14:1-5
- [15]Christensen E R,Nybolm N.Ecotoxicological assays with algae:Weibull dose-response curves[J].Environmental Science and Technology,1985,18:713-718
- [16]Haanstra L,Doelman P,Voshaar J H O.The use of sigmoidal dose response curves in soil ecotoxicological research[J].Plant Soil,1985,84(2):293-297
- [17]Doelman P,Haanstra L.Short-and long-term effects of heavy metals on phosphatase activity in soils:An ecological dose response model approach[J].Biology and Fertility of Soils,1989,8(3):235-241
- [18]Christensen E R,Kusk K O,Nyholm N.Dose-response regression for algal growth and similar continuous endpoints:Calculation of effective concentrations[J].Environmental Toxicology and Chemistry,2009,28(4):826-835
- [19]Michel A,Johnson R D,Duke S O,et al.Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata-An improved ecotoxicological method[J].Environmental Toxicology and Chemistry,2004,2(4):1074-1079
- [20]Ritz C.Toward a unified approach to dose-response modeling in ecotoxicology[J].Environmental Toxicology and Chemistry,2010,29(1):220-229
- [21]李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报,2010,47(4):665-673Li B,Ma Y B,Liu J F,et al.Major soil factors controlling copper toxicity to tomato in a wide range of Chinese soils and the predictable models[J].Acta Pedologica Sinica,2010,47(4):665-673(in Chinese)
- [22]李波.外源重金属铜、镍的植物毒害及预测模型研究[D].北京:中国农业科学院,2010Li B.The phytotoxicity of added copper and nickel to soils and predictive models[D].Beijing:Chinese Academy of Agricultural Sciences,2010(in Chinese)
- [23]葛会林,刘树深,刘芳.多组分苯胺类混合物对发光菌的抑制毒性[J].生态毒理学报,2006,1(4):295-302Ge H L,Liu S S,Liu F.Inhibition toxicity of mixtures of substituted anilines to photobacteria.[J].Asian Journal of Ecotoxicology,2006,1(4):295-302(in Chinese)
- [24]Chaperon S,Sauve S.Toxicity interaction of metals(Ag,Cu,Hg,Zn)to urease and dehydrogenase activities in soils[J].Soil Biology and Biochemistry,2007,39(9):2329-2338
- [25]Brown P L,Markich S J.Evaluation of the free ion activity model of metal-organism interaction:Extension of the conceptual model[J].Aquatic Toxicology,2000,51(2):177-194
- [26]Rooney C P,Zhao F J,McGrath Chemistry,2006,25(3):726-732
- [27]Rooney C P,Zhao F J,McGrath S P.Phytotoxicity of nickel in a range of European soils:Influence of soil properties,Ni solubility and speciation[J].Environmental Pollution,2007,145(2):596-605