背角无齿蚌AwPrx4A基因克隆及在PFOS和PFOA胁迫下的表达分析Effects of PFOS and PFOA on the AwPrx4A Expression in Freshwater Bivalve Anodonta woodiana
夏西超;张科;宋国英;马向莉;宗玉霞;张明霞;李冰洁;于瑞雪;薛士鹏;刘庆春;华春秀;张庆远;
摘要(Abstract):
硫氧化蛋白过氧化物酶(Prx)可以将过氧化氢、有机过氧化物和过氧化合物分别转化为水、乙醇和亚硝酸盐,是机体一种重要的抗氧化蛋白。为了探讨全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)对背角无齿蚌的胁迫效应,背角无齿蚌随机分为对照组、PFOS处理组和PFOA处理组;同时克隆出AwPrx4A全基因序列,分析PFOS和PFOA对AwPrx4A表达的影响。背角无齿蚌AwPrx4A cDNA全长由958个核苷酸组成,包含1个120 bp的5’非编码区,1个412 bp的3’非编码区和1个426 bp的开放阅读框,开放阅读框为由142个氨基酸组成的多肽链。PFOS和PFOA对背角无齿蚌的LC50分别为28.388和192.083 mg·L~(-1)。与对照组相比,浓度6.25、12.5、25、50和100 mg·L~(-1)的PFOS处理后,实验观察过程中肝胰腺中AwPrx4A mRNA水平分别增加了18.75%、2.85倍(P <0.05)、5.08倍(P <0.01)、5.52倍(P <0.01)和6.77倍(P <0.01)以上。与对照组相比,浓度50、100、200、400和800 mg·L~(-1)的PFOA处理后,实验观察过程中肝胰腺AwPrx4A mRNA水平分别增加了20.83%、2.21倍(P <0.01)、2.25倍(P <0.01)、3.19倍(P <0.01)和5.64倍(P <0.01)以上。与对照组相比,PFOS和PFOA处理后鳃中AwPrx4A mRNA水平分别增加了61.61%(P <0.05)和59.59%(P <0.05)以上。与对照组相比,PFOS和PFOA处理后血淋巴中AwPrx4A mRNA水平分别增加了47.42%和20.61%以上。结果表明,PFOS和PFOA处理对背角无齿蚌AwPrx4A表达具有明显的诱导作用,其原因与对抗PFOS和PFOA的胁迫效应有关。
关键词(KeyWords): 全氟辛烷磺酸;全氟辛酸;背角无齿蚌;AwPrx4A;胁迫效应
基金项目(Foundation): 河南省联合基金项目(182300410123);; 中国博士后基金项目(2016M590143)
作者(Author): 夏西超;张科;宋国英;马向莉;宗玉霞;张明霞;李冰洁;于瑞雪;薛士鹏;刘庆春;华春秀;张庆远;
Email:
DOI:
参考文献(References):
- [1]Liu C, Gin K Y, Chang V W, et al. Novel perspectives on the bioaccumulation of PFCs—The concentration dependency[J]. Environmental Science&Technology, 2011, 45(22):9758-9764
- [2]Liang R, He J, Shi Y, et al. Effects of perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna[J]. Chemosphere, 2017, 168:1613-1618
- [3]Liu C, Chang V W, Gin K Y, et al. Genotoxicity of perfluorinated chemicals(PFCs)to the green mussel(Perna viridis)[J]. Science of the Total Environment, 2014, 487:117-122
- [4]Maulvault A L, Camacho C, Barbosa V, et al. Assessing the effects of seawater temperature and p H on the bioaccumulation of emerging chemical contaminants in marine bivalves[J]. Environmental Research, 2018, 16:236-247
- [5]Parolini M, Magni S, Castiglioni S, et al. Amphetamine exposure imbalanced antioxidant activity in the bivalve Dreissena polymorpha causing oxidative and genetic damage[J]. Chemosphere, 2016, 144:207-213
- [6]Espinosa-Diez C, Miguel V, Mennerich D, et al. Antioxidant responses and cellular adjustments to oxidative stress[J]. Redox Biology, 2015, 6:183-197
- [7]Klichko V I, Orr W C, Radyuk S N. The role of peroxiredoxin 4 in inflammatory response and aging[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2016, 1862(2):265-273
- [8]Zhang X, Liu Z, Jeppesen E, et al. Effects of depositfeeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling:Implications for the restoration of eutrophic shallow lakes[J]. Water Research, 2014, 50:135-146
- [9]Hliwa P, Zdanowski B, Dietrich G J, et al. Temporal changes in gametogenesis of the invasive Chinese pond mussel Sinanodonta woodiana(Lea, 1834)(Bivalvia:Unionidae)from the Konin Lakes System(Central Poland)[J]. Folia Biologica(Krakow), 2015, 63(3):175-185
- [10]Xia X, Xue S, Wang X, et al. Response a chronic effects of PBDE-47:Up-regulations of HSP60 and HSP70 expression in freshwater bivalve Anodonta woodiana[J].Fish Shellfish Immunology, 2017, 65:213-225
- [11]Cong M, Ni D, Song L, et al. Molecular cloning, characterization and m RNA expression of peroxiredoxin in Zhikong scallop Chlamys farreri[J]. Molecular Biology Reports, 2009, 36(6):1451-1459
- [12]Ren L, Sun Y, Wang R, et al. Gene structure, immune response and evolution:Comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker,Miichthys miiuy[J]. Fish Shellfish Immunoogy, 2014, 36(2):409-416
- [13]Montemartini M, Kalisz H M, Hecht H J, et al. Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of crithidia fasciculate[J]. European Journal of Biochemistry, 1999, 264(2):516-524
- [14]Pushpamali W A, De Zoysa M, Kang H S, et al. Comparative study of two thioredoxin peroxidases from disk abalone(Haliotis discus discus):Cloning, recombinant protein purification, characterization of antioxidant activities and expression analysis[J]. Fish Shellfish Immunology,2008, 24(3):294-307
- [15]Li J, Li L, Zhang S, et al. Cloning, genomic structure, and expression analysis of peroxiredoxin V from bay scallop Argopecten irradians[J]. Fish Shellfish Immunology,2011, 30(1):309-316
- [16]Falaise C, Cormier P, Tremblay R, et al. Harmful or harmless:Biological effects of marennine on marine organisms[J]. Aquatic Toxicology, 2019, 209:13-25
- [17]Guo M, Wang H, Shao Y, et al. Gene identification and antimicrobial activity analysis of a novel lysozyme from razor clam Sinonovacula constricta[J]. Fish Shellfish Immunology, 2019, 89:198-206
- [18]Conder J M, Hoke R A, de Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J].Environmental Science&Technology, 2008, 42(4):995-1003
- [19]Li C, Yang L, Shi M, et al. Persistent organic pollutants in typical lake ecosystems[J]. Ecotoxicology and Environmental Safety, 2019, 180:668-678
- [20]Zhang Q, Huang J, Li F, et al. Molecular characterization,immune response against white spot syndrome virus infection of peroxiredoxin 4 in Fenneropenaeus chinensis and its antioxidant activity[J]. Fish Shellfish Immunology, 2014, 37(1):38-45
- [21]Wan H, Kang T, Zhan S, et al. Peroxiredoxin 5 from common cutworm(Spodoptera litura)acts as a potent antioxidant enzyme[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2014,175:53-61
- [22]Liu N N, Liu Z S, Lu S Y, et al. Full-length c DNA cloning, molecular characterization and differential expression analysis of peroxiredoxin 6 from Ovis aries[J]. Veterinary Immunology and Immunopathology, 2015, 164(3-4):208-219
- [23]Belz R G, Piepho H P. Statistical modeling of the hormetic dose zone and the toxic potencycompletes the quantitative description of hormetic dose responses[J]. Environmental Toxicology and Chemistry, 2015, 34(5):1169-1177