纳米TiO_2暴露对湿地植物大薸和泽泻光合特征影响的差异Different Effects of Nano-TiO_2 Exposure on the Photosynthesis Characteristics of Wetland Plant Pistia stratiotes and Alisma plantago-aquatica
曾强;李辉;侯磊;
摘要(Abstract):
纳米TiO_2独特的理化性质使其成为应用最广泛的纳米材料之一,其进入水环境后对湿地植物产生的效应值得关注。以2类不同生活型的湿地植物大薸和泽泻为研究对象,纳米TiO_2浓度梯度设置为0、10、30和250 mg·L~(-1),在暴露14 d之后分析了光合参数的变化规律,基于植物生物量变化率、各部位Ti元素浓度及光合特征参数,讨论了可能的机制。结果表明,纳米TiO_2暴露促进了大薸和泽泻的生物量增长;纳米TiO_2暴露后,Ti元素主要富集在植物根部,富集量随浓度升高而增加,大薸植物体内Ti元素浓度明显高于泽泻;高浓度纳米TiO_2暴露能够显著改变2种植物的叶孔开放程度、CO2消耗状况及蒸腾速率,但对净光合速率的影响不显著。纳米TiO_2暴露对2种植物光合特征影响的差异可能与它们不同的生活型有关。
关键词(KeyWords): 纳米TiO_2;湿地植物;光合作用
基金项目(Foundation): 国家自然科学基金资助项目(21607120);; 云南省一流学科(生态学)建设经费资助项目;; 西南林业大学本科生科技创新项目(Z17015)
作者(Author): 曾强;李辉;侯磊;
Email:
DOI:
参考文献(References):
- [1] Tan W,Peralta-Videa J R,Gardea-Torresdey J L. Interaction of titanium dioxide nanoparticles with soil components and plants:Current knowledge and future research needs—A critical review[J]. Environmental Science:Nano,2018,5(2):257-278
- [2]吕继涛,张淑贞.人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J].化学进展,2013,25(1):156-163Lv J T,Zhang S Z. Interactions between manufactured nanomaterials and plants:Phytotoxicity, uptake and translocation[J]. Progress in Chemistry, 2013, 25(1):156-163(in Chinese)
- [3]何湘伟,隋阳,张雪莹,等.纳米材料毒性机制及其影响因素[J].西南民族大学学报:自然科学版,2015,41(3):316-325He X W,Sui Y,Zhang X Y,et al. Toxicity mechanism of nanomaterials and influencing factors[J]. Journal of Southwest University of Nationalities:Natural Science Edition,2015,41(3):316-325(in Chinese)
- [4] Mitrano D M,Motellier S,Clavaguera S,et al. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J]. Environment International,2015,77:132-147
- [5] Goswami L,Kim K H,Deep A,et al. Engineered nano particles:Nature,behavior,and effect on the environment[J]. Journal of Environmental Management,2017,196:297-315
- [6] Dehkourdi E H,Mosavi M. Effect of anatase nanoparticles(Ti O2)on parsley seed germination(Petroselinum crispum)in vitro[J]. Biological Trace Element Research,2013,155(2):283-286
- [7] Asli S,Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant,Cell&Environment,2009,32:577-584
- [8]王震宇,于晓莉,高冬梅,等.人工合成纳米Ti O2和MWCNTs对玉米生长及其抗氧化系统的影响[J].环境科学,2010,31(2):480-487Wang Z Y,Yu X L,Gao D M,et al. Effect of nano-rutile Ti O2and multi-walled carbon nanotubes on the growth of maize(Zea mays L.)seedlings and the relevant antioxidant response[J]. Environmental Science,2010,31(2):480-487(in Chinese)
- [9]侯东颖,冯佳,谢树莲,等.纳米二氧化钛胁迫对普生轮藻的毒性效应[J].环境科学学报,2012,32(6):1481-1486Hou D Y,Feng J,Xie S L,et al. Toxic effects of nanoparticle Ti O2stress on Chara vulgaris L.[J]. Acta Scientiae Circumstantiae,2012,32(6):1481-1486(in Chinese)
- [10] Du W,Sun Y,Ji R,et al. Ti O2and Zn O nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J]. Journal of Environmental Monitoring,2011,13(4):822-828
- [11] Ze Y,Liu C,Wang L,et al. The regulation of Ti O2nanoparticles on the expression of light-harvesting complexⅡand photosynthesis of chloroplasts of Arabidopsis thaliana[J]. Biological Trace Element Research,2011,143(2):1131-1141
- [12] Yang F,Liu C,Gao F,et al. The improvement of spinach growth by nano-anatase Ti O2treatment is related to nitrogen photoreduction[J]. Biological Trace Element Research,2007,119(1):77-88
- [13] Zahra Z,Arshad M,Rafique R,et al. Metallic nanoparticles(Ti O2and Fe3O4)application modify rhizosphere phosphorus availability and uptake by Lactuca sativa[J]. Journal of Agricultural and Food Chemistry,2015,63(31):6876-6882
- [14] Li J,Naeem M S,Wang X,et al. Nano-TiO2is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response[J].PLoS One,2015,10(12):e0143885
- [15] Ayyaraju M,Jie H,Xuan G,et al. Effect and mechanism of Ti O2nanoparticles on the photosynthesis of Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety,2018,161:497-506
- [16] Dias M C,Santos C,Pinto G,et al. Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat[J]. Protoplasma,2019,256(1):69-78
- [17] Terry N. Limiting factors in photosynthesis:Ⅰ.Use of iron stress to control photochemical capacity in vivo[J].Plant Physiology,1980,65(1):114-120
- [18] Hajra A,Mondal N K. Effects of Zn O and Ti O2nanoparticles on germination,biochemical and morphoanatomical attributes of Cicer arietinum L.[J]. Energy Ecology&Environment,2017,2(4):1-12
- [19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:309-310
- [20]吕继涛,罗磊,张淑贞,等.玉米对纳米Ti O2的吸收和积累[J].环境化学,2011,30(5):903-907Lv J T,Luo L,Zhang S Z,et al. The uptake and accumulation of Ti O2nanoparticles by maize plants[J]. Environmental Chemistry,2011,30(5):903-907(in Chinese)
- [21] Song U,Jun H,Waldman B,et al. Functional analyses of nanoparticle toxicity:A comparative study of the effects of Ti O2and Ag on tomatoes Lycopersicon esculentum[J]. Ecotoxicology and Environmental Safety,2013,93:60-67
- [22]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244Xu D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications,1997,33(4):241-244(in Chinese)
- [23] Carvajal M,Alcaraz C F. Why titanium is a beneficial element for plants[J]. Journal of Plant Nutrition,1998,21(4):655-664
- [24]高嫄.纳米Ti O2、纳米Cu O对青萍生长影响及其机理探讨[D].淄博:山东理工大学,2012:19-20Gao Y. Effect and mechanism of Ti O2and Cu O nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology,2012:19-20(in Chinese)
- [25] Wu Y,Gong W,Wang Y,et al. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean[J]. Journal of Plant Research,2018,131(4):671-680
- [26] Lyu S,Wei X,Chen J,et al. Titanium as a beneficial element for crop production[J]. Frontiers in Plant Science,2017,8:597-616
- [27] Ahmad B,Shabbir A,Jaleel H,et al. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis,peltate glandular trichomes and essential oil production and quality in Mentha piperita L.[J]. Current Plant Biology,2018,13:6-15
- [28] Kurepa J,Paunesku T,Vogt S,et al. Uptake and distribution of ultrasmall anatase Ti O2alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Letters,2010,10(7):2296-2302
- [29]李艳娟,庄正,刘青青,等.纳米Ti O2对杉木种子萌发和幼苗生长及生理的影响[J].生态学杂志,2017,36(5):1259-1264Li Y J,Zhuang Z,Liu Q Q,et al. The effects of nanoTi O2on seed germination,seedling growth and physiology of Chinese fir[J]. Chinese Journal of Ecology,2017,36(5):1259-1264(in Chinese)
- [30]林道辉,冀静,田小利,等.纳米材料的环境行为与生物毒性[J].科学通报,2009,54(23):3590-3604Lin D H,Ji J,Tian X L,et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin,2009,54(23):3590-3604(in Chinese)
- [31] Movafeghi A,Khataee A,Abedi M,et al. Effects of Ti O2nanoparticles on the aquatic plant Spirodela polyrrhiza:Evaluation of growth parameters,pigment contents and antioxidant enzyme activities[J]. Journal of Environmental Sciences,2018,64(2):130-138
- [32] Hussain S,Iqbal N,Brestic M,et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment[J]. Science of the Total Environment,2019,658:626-637
- [33]巴翠兰.纳米二氧化钛在植物体内吸收、转运和蓄积及与蛋白作用机理的研究[D].保定:河北大学,2012:14-18Ba C L. Absorption,transport and accumulation of titanium dioxide in plants and function methods between protein and metal[D]. Baoding:Hebei University,2012:14-18(in Chinese)