应用生物配体模型研究铅和镉及其混合物联合毒性Validation of the Biotic Ligand Model(BLM) Predicting Pb,Cd and Their Mixtures Toxicity
周亚;朱琳;冯剑丰;杨光;
摘要(Abstract):
为探讨生物配体模型(BLM)对金属混合物的适用性,以莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,以藻体内短时间(≤60 min)生物积累量为指标,研究了Pb和Cd对莱茵衣藻的联合毒性作用。结果表明:Pb和Cd单独暴露下,藻体内生物积累过程可用米门方程(Michaelis-Menten equation)来描述。计算得到Cd传输位点的最大吸收通量Jmax为(8.312±0.034)×10-12mol·cm-2·s-1,该位点的半饱和系数(米门系数)KM=(1.012±0.032)×10-6mol·L-1,稳定常数KCd=0.988×106(mol·L-1)-1;Pb传输位点的Jmax为(1.28±0.039)×10-11mol·cm-2·s-1,该位点的KM=(3.56±0.34)×10-7mol·L-1,KPb为2.81×106(mol·L-1)-1。Cd和Pb的竞争实验中,当固定Cd的浓度,其吸收通量随Pb的增加而显著降低;固定Pb的浓度,其吸收通量随Cd的增加略有降低。这表明Pb和Cd可能存在相同的传输位点,且Pb对传输位点的结合能力要远大于Cd。在低浓度Pb和Cd的混合暴露溶液中,短时间内绿藻对Pb的生物积累量会远大于Cd。研究结果表明BLM可用于描述低浓度下Cd和Pb的竞争关系。
关键词(KeyWords): 莱茵衣藻;重金属;Pb;Cd;联合毒性;生物配体模型
基金项目(Foundation): 国家自然科学基金(21277076);; 国家水体污染控制与治理科技重大专项(2012ZX07501-003)
作者(Author): 周亚;朱琳;冯剑丰;杨光;
Email:
DOI:
参考文献(References):
- [1]Di Toro D M,Allen H E,Bergman H L,et al.Bioticligand model of the acute toxicity of metals.1.Technical basis[J].Environmental Toxicology and Chemistry,2001,20(10):2383-2396
- [2]De Schamphelaere K A C,Janssen C R.A biotic ligand model predicting acute copper toxicity for Daphnia mag-na:The effects of calcium,magnesium,sodium,potassium,and p H[J].Environmental Science and Technology,2002,36(1):48-54
- [3]Niyogi S,Wood C M.Biotic ligand model,a flexible tool for developing site-specific water quality guidelines for metals[J].Environmental Science&Technology,2004,38(23):6177-6192
- [4]Playle R C.Modelling metal interactions at fish gills[J].Science of the Total Environment,1998,219(2-3):147-163
- [5]Slaveykova V I,Wilkinson K J.Predicting the bioavailability of metals and metal complexes:Critical review of the biotic ligand model[J].Environmental Chemistry,2005,2(1):9-24
- [6]US EPA.Aquatic life ambient freshwater quality criteriacopper[R].Washington DC:Office of Water,2007
- [7]Van S P,Vangheluwe M,Van H A,et al.European Union Risk Assessment Report:Copper,Copper(Ⅱ)Sulphatepentahydrate,Copper(Ⅰ)Oxide,Copper(Ⅱ)Oxide,Dicopper Chloride Trihydroxide(Part 1)[M]//Voluntary Risk Assessment.Environmental Effects.Brussels,Belgium:European Copper Institute,2007
- [8]王春艳,陈浩,安立会,等.BLM预测水中重金属生物有效性研究进展[J].环境科学与技术,2011,34(8):75-80Wang C Y,Chen H,An L H,et al.An updated review on biotic ligand model in predicting metal bioavailability in surface waters[J].Environmental Science&Technology,2011,34(8):75-80(in Chinese)
- [9]张融,范文宏,唐戈,等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J].生态毒理学报,2008,3(3):286-290Zhang R,Fan W H,Tang G,et al.A preliminary study on joint toxic effects of Cd and Zn on Daphnia magna[J].Asian Journal of Ecotoxicology,2008,3(3):286-290(in Chinese)
- [10]Niyogi S,Wood C M.Biotic ligand model,a flexible tool for developing site-specific water quality guidelines for metals[J].Environmental Science&Technology,2004,38(23):6177-6192
- [11]Veltman K,Huijbregts M A J,Hendriks A J.Integration of biotic ligand models(BLM)and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms[J].Environmental Science&Technology,2010,44(13):5022-5028
- [12]张永辉,王龙昌,周岩民,等.铅、镉联合暴露对公鸡生长早期生殖发育的影响[J].生态毒理学报,2011,6(2):165-170Zhang Y H,Wang L C,Zhou Y M,et al.Effects of concurrent exposure to plumbum and cadmium on reproductive development in cocks[J].Asian Journal of Ecotoxicology,2011,6(2):165-170(in Chinese)
- [13]Puig S,Thiele D J.Molecular mechanisms of copper uptake and distribution[R].Current Opinion in Chemical Biology,2002,6(2):171-180
- [14]詹杰,胡德奇,柳承希,等.镉对血管内皮细胞损伤及其致动脉硬化的毒理学机制[J].生态毒理学报,2012,7(6):633-638Zhan J,Hu D Q,Liu C X,et al.Damage of cadmium to vascular endothelial cells and its toxicity mechanism in atherosclerosis[J].Asian Journal of Ecotoxicology,2012,7(6):633-638(in Chinese)
- [15]詹杰,魏树和.镉中毒的干预措施与机理分析[J].生态毒理学报,2012,7(4):354-359Zhan J,Wei S H.Methods of inhibiting cadmium toxicity and its mechanism:A review[J].Asian Journal of Ecotoxicology,2012,7(4):354-359(in Chinese)
- [16]An J S,Seulki J.Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil[J].Journal of Hazardous Materials,2012,203(204):69-76
- [17]Worms I A M,Wilkinson K J.Ni uptake by a green alga.2.Validation of equilibrium models for competition effects[J].Environmental Science&Technology,2007,41(12):4264-4270
- [18]Worms I A M,Parthasarathy N,Wilkinson K J.Ni uptake by a green alga.1.Validation of equilibrium models for complexation effects[J].Environmental Science&Technology,2007,41(12):4258-4263
- [19]Chen Z Z,Zhu L,Wilkinson K J.Validation of the biotic ligand model in metal mixtures:Bioaccumulation of lead and copper[J].Environmental Science&Technology,2010,44(9):3580-3586
- [20]Kolah H,Laglera L M,Parthasarathy N,et al.Cadmium adsorption by Chlamydomonas reinhardtii and its interaction with the cell wall proteins[J].Environmental Chemistry,2004,1(3):172-179
- [21]Hassler C S,Slaveykova V I,Wilkinson K J.Discriminating between intra-and extracellular metals using chemical extractions[J].Limnology and OceanographyMethods,2004,2:237-247
- [22]Kola H,Wilkinson K J.Cadmium uptake by a green alga can be predicted by equilibrium modeling[J].Environmental Science&Technology,2005,39(9):3040-3047
- [23]Lavoiem M,Campbell P G C,Fortin C.Extending the biotic ligand model to account for positive and negativefeedback interactions between cadmium and zinc in a freshwater alga[J].Environmental Science&Technology,2012,46(21):12129-12136
- [24]Paquin P R,Gorsuch J W,Apte S,et al.The biotic ligand model:A historical overview[J].Comparative Biochemistry and Physiology C-Toxicology and Pharmacology,2002,133(1-2):3-35
- [25]Worms I A M,Wilkinson K J.Ni uptake by a green alga.2.Validation of equilibriummodels for competition effects[J].Environmental Science&Technology,2007,41(12):4264-4270