农药类化合物对大型溞的毒性作用模式:与基线毒性化合物比较研究The Modes of Action of Agricultural Chemicals to Daphnia magna: A Comparative Study with Baseline Compounds
闫俐辰;王晓红;赵元慧;
摘要(Abstract):
农药在控制有害生物的同时,对水生生态系统产生较大的毒性效应。本文通过实验获得了25种基线化合物对大型溞的急性毒性数据,并与57种农药类化合物对大型溞的急性毒性数据进行比较研究,同时根据体外浓度LC_(50)、生物富集因子BCF和体内临界浓度CBR的关系,计算了这些化合物在大型溞体内的临界浓度,研究了农药类化合物对大型溞的毒性作用机理。结果表明,基线化合物在大型溞体内的临界浓度log1/CBR值在一个很窄的范围波动,而农药类化合物在大型溞体内的临界浓度log1/CBR值范围广且较高。这说明多数农药类化合物对大型溞为反应性毒性作用模式。其中,除草剂对大型溞的毒性显著低于杀菌剂和杀虫剂对大型溞的毒性。这可能是因为除草剂主要通过干扰植物光合作用、植物激素或植物分子合成发挥毒性效应,从而导致其对大型溞的生理系统难以发生反应性毒性效应。而杀虫剂和杀菌剂主要通过干扰生物神经系统、生殖系统、呼吸作用或大分子合成发挥毒性效应,因此易与大型溞生理系统发生生物化学反应,从而具有较高的毒性效应。本文分别建立了除草剂、杀菌剂和杀虫剂对大型溞的急性毒性QSAR模型。除草剂对大型溞的急性毒性机理较简单,其毒性与化合物疏水性程度和离子化程度有关;而杀菌剂对大型溞的急性毒性主要与化合物的标准生成热和极性表面积有关;杀虫剂对大型溞的急性毒性作用机理较复杂,它们对大型溞的毒性效应与其和生物分子之间的氢键和范德华力有关。
关键词(KeyWords): 农药;大型溞;基线毒性;临界浓度;毒性作用模式
基金项目(Foundation): 国家自然科学基金(21777022)
作者(Author): 闫俐辰;王晓红;赵元慧;
Email:
DOI:
参考文献(References):
- [1]Papa E,Battaini F,Gramatica P.Ranking of aquatic toxicity of esters modelled by QSAR[J].Chemosphere,2005,58:559-570
- [2]Velki M,Di P C,Nelles J,et al.Diuron and diazinon alter the behavior of zebrafish embryos and larvae in the absence of acute toxicity[J].Chemosphere,2017,180:65-76
- [3]Lal S,Lal R,Saxena D M.Bioconcentration and metabolism of DDT,fenitrothion and chlorpyrifos by the bluegreen algae Anabaena sp.and Aulosira fertilissima[J].Environmental Pollution,1987,46:187-196
- [4]Mansano A S,Moreira R A,Dornfeld H C,et al.Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata[J].Ecotoxicology and Environmental Safety,2017,142:312-321
- [5]Nobels I,Spanoghe P,Haesaert G,et al.Toxicity ranking and toxic mode of action evaluation of commonly used agricultural adjuvants on the basis of bacterial gene expression profiles[J].Plo S One,2011,6:e24139
- [6]Verhaar H J M,Leeuwen C J V,Hermens J L M.Classifying environmental pollutants[J].Chemosphere,1992,25:471-491
- [7]Schultz T W,Cronin M T D,Walker J D,et al.Quantitative structure-activity relationships(QSARs)in toxicology:A historical perspective[J].Journal of Molecular Structure:THEOCHEM,2003,622:1-22
- [8]Zhao Y H,Zhang X J,Wen Y,et al.Toxicity of organic chemicals to Tetrahymena pyriformis:Effect of polarity and ionization on toxicity[J].Chemosphere,2010,79:72-77
- [9]Zhao Y H,Qin W C,Su L M,et al.Toxicity of substituted benzenes and algae(Scenedesmus obliquus)with solvation equation[J].Chinese Science Bulletin,2009,54:1690-1696
- [10]Su L M,Fu L,He J,et al.Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity,polarity,ionization and reactivity of class-based compounds[J].SAR and QSAR in Environmental Research,2012,23:537-552
- [11]Verhaar H J M,SolbéJ,Speksnijder J,et al.Classifying environmental pollutants:Part 3.External validation of the classification system[J].Chemosphere,2000,40:875-883
- [12]Dodson S I,Hanazato T.Commentary on effects of anthropogenic and natural organic chemicals on development,swimming behavior,and reproduction of Daphnia,a key member of aquatic ecosystems[J].Environmental Health Perspectives,1995,103:7-11
- [13]Ferguson J.The use of chemical potentials as indices of toxicity[J].Proceedings of the Royal Society B Biological Sciences,1939,127:387-404
- [14]Bodar C W M,Van der Sluis I,Van Montfort J C P,et al.Cadmium resistance in Daphnia magna[J].Aquatic Toxicology,1990,16:33-39
- [15]Genoni G P.Influence of the energy relationships of organic compounds on toxicity to the cladoceran Daphnia magna and the fish Pimephales promelas[J].Ecotoxicology and Environmental Safety,1997,36:27-37
- [16]Pedersen F,Petersen G I.Variability of species sensitivity to complex mixtures[J].Water Science and Technology,1996,33:109-119
- [17]Von der Ohe P C,Kühne R,Ebert R U,et al.Structural alerts—A new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay[J].Chemical Research in Toxicology,2005,18:536-555
- [18]Cui F,Chai T,Qian L,et al.Effects of three diamides(chlorantraniliprole,cyantraniliprole and flubendiamide)on life history,embryonic development and oxidative stress biomarkers of Daphnia magna[J].Chemosphere,2017,169:107-116
- [19]Cui F,Chai T,Liu X,et al.Toxicity of three strobilurins(kresoxim-methyl,pyraclostrobin,and trifloxystrobin)on Daphnia magna[J].Environmental Toxicology and Chemistry,2017,36:182-189
- [20]Li J J,Wang X H,Wang Y,et al.Discrimination of excess toxicity from narcotic effect:Influence of species sensitivity and bioconcentration on the classification of modes of action[J].Chemosphere,2015,120:660-673
- [21]Mc Carty L S.Relationship between Toxicity and Bioconcentration for Some Organic Chemicals.I.Examination of the Relationship[M]//Kaiser K L E.eds.QSAR in Environmental Toxicology-Ⅱ.Dordrecht:D Reidel Publishing Co,1987:207-220
- [22]Neely W B,Branson D R,Blau G E.Partition coefficients to measure bioconcentration potential of organic chemicals in fish[J].Environmental Science&Technology,1974,8:1113-1115
- [23]Arnot J A,Gobas F A P C.A food web bioaccumulation model for organic chemicals in aquatic ecosystems[J].Environmental Toxicology&Chemistry,2004,23:2343-2355
- [24]Mc Carty L S,Mackay D,Smith A D,et al.Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays:Neutral narcotic organics[J].Environmental Toxicology&Chemistry,1992,11:917-930
- [25]Geyer H J,Scheunert I,Brüggemann R.QSAR for organic chemical bioconcentration in daphnia,algae,and mussels[J].Science of the Total Environment,1991,109:387-394
- [26]Maeder V,Escher B I,Scheringer M,et al.Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent,bioaccumulative,and toxic chemicals[J].Environmental Science&Technology,2004,38:3659-3666
- [27]Su L M,Liu X,Wang Y,Net al.The discrimination of excess toxicity from baseline effect:Effect of bioconcentration[J].Science of the Total Environment,2014,484:137-145
- [28]Meador J P,Adams W J,Escher B I,et al.The tissue residue approach for toxicity assessment:Findings and critical reviews from a society of environmental toxicology and chemistry Pellston workshop[J].Integrated environmental assessment and management,2011,7:2-6
- [29]Li J J,Zhang X J,Wang X H,et al.Discrimination of excess toxicity from baseline level for ionizable compounds:Effect of p H[J].Chemosphere,2016,147:382-388
- [30]Fu L,Li J J,Wang Y,et al.Evaluation of toxicity data to green algae and relationship with hydrophobicity[J].Chemosphere,2015,120:16-22
- [31]United States Environmental Protection Agency(US EPA).Washington,DC 20460[R].Washington DC:Office of Prevention,Pesticides,and Toxic Substances,2006
- [32]Qin W C,Su L M,Zhang X J,et al.Toxicity of organic pollutants to seven aquatic organisms:Effect of polarity and ionization[J].SAR and QSAR in Environmental Research,2010,21:389-401