加权基因共表达网络分析全氟和多氟烷基化合物对人间充质干细胞的毒性靶点Identification of Toxic Targets for Per-and Polyfluoroalkyl Substances in Human Bone Mesenchymal Stem Cells by Weighted Gene Co-expression Network Analysis
潘一帆;秦会;刘薇;
摘要(Abstract):
超过3 000种全氟多氟化合物(per-and polyfluoroalkyl substances, PFASs)已被投入全球市场,大量新型替代品的环境效应与健康风险仍然未知,为PFASs的监管带来了极大的挑战。为揭示PFASs及新型替代品干扰的生物学过程和敏感靶基因,将人骨髓间充质干细胞(human bone mesenchymal stem cells, hBMSCs)暴露于氯代多氟醚基磺酸(chlorinated polyfluoroalkyl ether sulfonates, Cl-PFESAs)、全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)、全氟己烷磺酸(perfluorohexane sulfonate, PFHxS)和全氟辛酸(perfluorooctanoic acid, PFOA),利用加权基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)方法比较细胞基因表达谱的变化。WGCNA使用拓扑重叠计算5 004个基因间的关联程度,并结合动态剪切树法将其划分为14个通过颜色区分的基因模块,除灰色模块外各模块内的基因高度相关。基因模块与细胞样本相关性分析发现,对照组细胞基因表达谱与Blue和Greenyellow模块正相关,PFOS暴露组与Blue模块显著负相关,Cl-PFESAs暴露组与Greenyellow模块显著负相关,表明PFASs暴露使细胞中Blue和Greenyellow模块基因表达模式发生较大变化。Blue和Greenyellow模块显著富集的生物学过程主要为胆固醇生物合成和骨髓白细胞分化负调控,提示免疫调控和脂质代谢可能是多种PFASs作用于hBMSCs的共同潜在靶点。根据模块基因共表达网络的连通性筛选枢纽基因,发现与脂质代谢相关的DHCR24、SQLE和EBP基因可能是PFASs影响脂质代谢的敏感作用靶基因。进一步利用hBMSCs体外模型研究PFASs的相关毒性作用和机制,有助于建立该类化学物毒性预测和筛选的生物标志物,为其安全性评价和监管提供科学依据和新方法。
关键词(KeyWords): 全氟和多氟烷基化合物;间充质干细胞;加权基因共表达网络分析;免疫调控;脂质代谢
基金项目(Foundation): 国家重点研发计划项目(2016YFC0401108);; 国家自然科学基金项目(21777020)
作者(Author): 潘一帆;秦会;刘薇;
Email:
DOI:
参考文献(References):
- [1]Wang Z, De Witt J C, Higgins C P, et al. A never-ending story of per-and polyfluoroalkyl substances(PFASs)?[J]. Environmental Science&Technology, 2017, 51(5):2508-2518
- [2]周秀鹃,盛南,王建设,等.全氟和多氟化合物替代品的研究进展[J].生态毒理学报, 2017, 12(3):3-12Zhou X J, Sheng N, Wang J S, et al. The current research status of several kinds of fluorinated alternatives[J]. Asian Journal of Ecotoxicology, 2017, 12(3):3-12(in Chinese)
- [3]Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity,persistence, and presence in the environment[J]. Environmental Science&Technology, 2013, 47(18):10163-10170
- [4]Shi G, Cui Q, Pan Y, et al. 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos[J]. Aquatic Toxicology, 2017, 185:67-75
- [5]Li C H, Ren X M, Ruan T, et al. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate[J]. Environmental Science&Technology, 2018, 52(5):3232-3239
- [6]Yin N, Yang R, Liang S, et al. Evaluation of the early developmental neural toxicity of F-53B, as compared to PFOS, with an in vitro mouse stem cell differentiation model[J]. Chemosphere, 2018, 204:109-118
- [7]Faiola F, Yin N, Yao X, et al. The rise of stem cell toxicology[J]. Environmental Science&Technology, 2015,49(10):5847-5848
- [8]Yao X L, Yin N Y, Faiola F. Stem cell toxicology:A powerful tool to assess pollution effects on human health[J]. National Science Review, 2016, 3(4):430-450
- [9]Perez F, Nadal M, Navarro-Ortega A, et al. Accumulation of perfluoroalkyl substances in human tissues[J]. Environment International, 2013, 59:354-362
- [10]Uhl S A, James-Todd T, Bell M L. Association of osteoarthritis with perfluorooctanoate and perfluorooctane sulfonate in NHANES 2003—2008[J]. Environmental Health Perspectives, 2013, 121(4):447-452
- [11]Khalil N, Chen A, Lee M, et al. Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the US population in NHANES 2009—2010[J]. Environmental Health Perspectives, 2016, 124(1):81-87
- [12]Liu W, Qin H, Pan Y F, et al. Low concentrations of perfluorooctane sulfonate repress osteogenic and enhance adipogenic differentiation of human mesenchymal stem cells[J]. Toxicology and Applied Pharmacology, 2019, 367:82-91
- [13]Langfelder P, Horvath S. WGCNA:An R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9:559
- [14]Peng J, Song J, Zhou J, et al. Effects of CPAP on the transcriptional signatures in patients with obstructive sleep apnea via coexpression network analysis[J]. Journal of Cellular Biochemistry, 2019, 120(6):9277-9290
- [15]Wang X, Ghareeb W M, Zhang Y, et al. Hypermethylated and downregulated MEIS2 are involved in stemness properties and oxaliplatin-based chemotherapy resistance of colorectal cancer[J]. Journal of Cellular Physiology, 2019,234(10):18180-18191
- [16]Huang D W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Natures Protocols, 2009, 4(1):44-57
- [17]Lau C. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances[M]. New York:Humana Press,2015:178-183, 241-242
- [18]Brieger A, Bienefeld N, Hasan R, et al. Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes[J]. Toxicology in Vitro, 2011, 25(4):960-968
- [19]Corsini E, Luebke R W, Germolec D R, et al. Perfluorinated compounds:Emerging POPs with potential immunotoxicity[J]. Toxicology Letters, 2014, 230(2):263-270
- [20]De Miguel M P, Fuentes-Julián S, Blázquez-Martínez A,et al. Immunosuppressive properties of mesenchymal stem cells:Advances and applications[J]. Current Molecular Medicine, 2012, 12(5):574-591
- [21]Porter F D, Herman G E. Malformation syndromes caused by disorders of cholesterol synthesis[J]. The Journal of Lipid Research, 2011, 52(1):6-34
- [22]Spann N J, Garmire L X, Mc Donald J G, et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses[J]. Cell, 2012,151(1):138-152
- [23]Buchovecky C M, Turley S D, Brown H M, et al. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome[J]. Nature Genetics,2013, 45(9):1013-1020
- [24]Derry J M, Gormally E, Means G D, et al. Mutations in a a delta 8-delta 7 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata[J]. Nature Genetics, 1999, 22(3):286-290
- [25]Davis A P, Grondin C J, Johnson R J, et al. The comparative toxicogenomics database:Update 2019[J]. Nucleic Acids Research, 2019, 47(D1):D948-D954
- [26]Ren H Z, Vallanat B, Nelson D M, et al. Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species[J]. Reproductive Toxicology, 2009, 27(3-4):266-277
- [27]Rosen M B, Schmid J R, Corton J C, et al. Gene expression profiling in wild-type and PPARα-null mice exposed to perfluorooctane sulfonate reveals PPARα-independent effects[J]. PPAR Research, 2010, 2010:794739
- [28]Yan S M, Zhang H X, Guo X J, et al. High perfluorooctanoic acid exposure induces autophagy blockage and disturbs intracellular vesicle fusion in the liver[J]. Archives of Toxicology, 2017, 91(1):247-258
- [29]胡佳玥,戴家银.全氟及多氟类化合物在人体分布及其毒性研究进展[J].生态毒理学报, 2013, 8(5):650-657Hu J Y, Dai J Y. Advance in studies on human distribution and toxic effects of perfluoroalkyl and polyfluoroalkyl substances[J]. Asian Journal of Ecotoxicology, 2013,8(5):650-657(in Chinese)
- [30]Li C H, Ren X M, Guo L H. Adipogenic activity of oligomeric hexafluoropropylene oxide(perfluorooctanoic acid alternative)through peroxisome proliferator-activated receptor gamma pathway[J]. Environmental Science&Technology, 2019, 53(6):3287-3295
- [31]Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells:Adipocytes or osteoblasts?[J]. Cell Death and Differentiation, 2016, 23(7):1128-1139